MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe Unicode version

Theorem isowe 5766
Description: An isomorphism preserves well ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  We  A 
<->  S  We  B ) )

Proof of Theorem isowe
StepHypRef Expression
1 isofr 5759 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
<->  S  Fr  B ) )
2 isoso 5765 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
31, 2anbi12d 694 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( ( R  Fr  A  /\  R  Or  A )  <->  ( S  Fr  B  /\  S  Or  B ) ) )
4 df-we 4312 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
5 df-we 4312 . 2  |-  ( S  We  B  <->  ( S  Fr  B  /\  S  Or  B ) )
63, 4, 53bitr4g 281 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  We  A 
<->  S  We  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    Or wor 4271    Fr wfr 4307    We wwe 4309    Isom wiso 4660
This theorem is referenced by:  f1owe  5770  hartogslem1  7211  oemapwe  7350  om2uzoi  10970
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676
  Copyright terms: Public domain W3C validator