MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Unicode version

Theorem isph 21402
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1  |-  X  =  ( BaseSet `  U )
isph.2  |-  G  =  ( +v `  U
)
isph.3  |-  M  =  ( -v `  U
)
isph.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
isph  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Distinct variable groups:    x, y, G    x, M, y    x, N, y    x, U, y   
x, X, y

Proof of Theorem isph
StepHypRef Expression
1 phnv 21394 . 2  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
2 isph.2 . . . . 5  |-  G  =  ( +v `  U
)
3 eqid 2285 . . . . 5  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 isph.6 . . . . 5  |-  N  =  ( normCV `  U )
52, 3, 4nvop 21245 . . . 4  |-  ( U  e.  NrmCVec  ->  U  =  <. <. G ,  ( .s OLD `  U ) >. ,  N >. )
6 eleq1 2345 . . . . 5  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  <. <. G ,  ( .s
OLD `  U ) >. ,  N >.  e.  CPreHil OLD ) )
7 fvex 5541 . . . . . . . 8  |-  ( +v
`  U )  e. 
_V
82, 7eqeltri 2355 . . . . . . 7  |-  G  e. 
_V
9 fvex 5541 . . . . . . 7  |-  ( .s
OLD `  U )  e.  _V
10 fvex 5541 . . . . . . . 8  |-  ( normCV `  U )  e.  _V
114, 10eqeltri 2355 . . . . . . 7  |-  N  e. 
_V
12 isph.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
1312, 2bafval 21162 . . . . . . . 8  |-  X  =  ran  G
1413isphg 21397 . . . . . . 7  |-  ( ( G  e.  _V  /\  ( .s OLD `  U
)  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) ) )
158, 9, 11, 14mp3an 1277 . . . . . 6  |-  ( <. <. G ,  ( .s
OLD `  U ) >. ,  N >.  e.  CPreHil OLD  <->  (
<. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
16 isph.3 . . . . . . . . . . . . . . . 16  |-  M  =  ( -v `  U
)
1712, 2, 3, 16nvmval 21202 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  y  e.  X )  ->  (
x M y )  =  ( x G ( -u 1 ( .s OLD `  U
) y ) ) )
18173expa 1151 . . . . . . . . . . . . . 14  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( x M y )  =  ( x G (
-u 1 ( .s
OLD `  U )
y ) ) )
1918fveq2d 5531 . . . . . . . . . . . . 13  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( N `  ( x M y ) )  =  ( N `  ( x G ( -u 1
( .s OLD `  U
) y ) ) ) )
2019oveq1d 5875 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( ( N `  ( x M y ) ) ^ 2 )  =  ( ( N `  ( x G (
-u 1 ( .s
OLD `  U )
y ) ) ) ^ 2 ) )
2120oveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) ) )
2221eqeq1d 2293 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) )  <->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2322ralbidva 2561 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2423ralbidva 2561 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  ( A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
2524pm5.32i 618 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
26 eleq1 2345 . . . . . . . 8  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  NrmCVec  <->  <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec ) )
2726anbi1d 685 . . . . . . 7  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )  <->  ( <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) ) )
2825, 27syl5rbb 249 . . . . . 6  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( ( <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) ) )
2915, 28syl5bb 248 . . . . 5  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
306, 29bitrd 244 . . . 4  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
315, 30syl 15 . . 3  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
3231bianabs 850 . 2  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<-> 
A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
331, 32biadan2 623 1  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   _Vcvv 2790   <.cop 3645   ` cfv 5257  (class class class)co 5860   1c1 8740    + caddc 8742    x. cmul 8744   -ucneg 9040   2c2 9797   ^cexp 11106   NrmCVeccnv 21142   +vcpv 21143   BaseSetcba 21144   .s
OLDcns 21145   -vcnsb 21147   normCVcnmcv 21148   CPreHil OLDccphlo 21392
This theorem is referenced by:  phpar2  21403  sspph  21435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-ltxr 8874  df-sub 9041  df-neg 9042  df-grpo 20860  df-gid 20861  df-ginv 20862  df-gdiv 20863  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-vs 21157  df-nmcv 21158  df-ph 21393
  Copyright terms: Public domain W3C validator