HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Unicode version

Theorem issh2 22668
Description: Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Distinct variable group:    x, y, H

Proof of Theorem issh2
StepHypRef Expression
1 issh 22667 . 2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
2 ax-hfvadd 22460 . . . . . . 7  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ffun 5556 . . . . . . 7  |-  (  +h  : ( ~H  X.  ~H ) --> ~H  ->  Fun  +h  )
42, 3ax-mp 8 . . . . . 6  |-  Fun  +h
5 xpss12 4944 . . . . . . . 8  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
65anidms 627 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
72fdmi 5559 . . . . . . 7  |-  dom  +h  =  ( ~H  X.  ~H )
86, 7syl6sseqr 3359 . . . . . 6  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  dom  +h  )
9 funimassov 6186 . . . . . 6  |-  ( ( Fun  +h  /\  ( H  X.  H )  C_  dom  +h  )  ->  (
(  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
104, 8, 9sylancr 645 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
11 ax-hfvmul 22465 . . . . . . 7  |-  .h  :
( CC  X.  ~H )
--> ~H
12 ffun 5556 . . . . . . 7  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  Fun  .h  )
1311, 12ax-mp 8 . . . . . 6  |-  Fun  .h
14 xpss2 4948 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  ( CC  X.  ~H )
)
1511fdmi 5559 . . . . . . 7  |-  dom  .h  =  ( CC  X.  ~H )
1614, 15syl6sseqr 3359 . . . . . 6  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  dom  .h  )
17 funimassov 6186 . . . . . 6  |-  ( ( Fun  .h  /\  ( CC  X.  H )  C_  dom  .h  )  ->  (
(  .h  " ( CC  X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1813, 16, 17sylancr 645 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  .h  " ( CC 
X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1910, 18anbi12d 692 . . . 4  |-  ( H 
C_  ~H  ->  ( ( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2019adantr 452 . . 3  |-  ( ( H  C_  ~H  /\  0h  e.  H )  ->  (
( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2120pm5.32i 619 . 2  |-  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) )  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
221, 21bitri 241 1  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1721   A.wral 2670    C_ wss 3284    X. cxp 4839   dom cdm 4841   "cima 4844   Fun wfun 5411   -->wf 5413  (class class class)co 6044   CCcc 8948   ~Hchil 22379    +h cva 22380    .h csm 22381   0hc0v 22384   SHcsh 22388
This theorem is referenced by:  shaddcl  22676  shmulcl  22677  shmulclOLD  22678  issh3  22679  helch  22703  hsn0elch  22707  hhshsslem2  22725  ocsh  22742  shscli  22776  shintcli  22788  imaelshi  23518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367  ax-hilex 22459  ax-hfvadd 22460  ax-hfvmul 22465
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6047  df-sh 22666
  Copyright terms: Public domain W3C validator