MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Structured version   Unicode version

Theorem istgp 18100
Description: The predicate "is a topological group". Definition of [BourbakiTop1] p. III.1 (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1  |-  J  =  ( TopOpen `  G )
istgp.2  |-  I  =  ( inv g `  G )
Assertion
Ref Expression
istgp  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )

Proof of Theorem istgp
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3523 . . 3  |-  ( G  e.  ( Grp  i^i TopMnd )  <-> 
( G  e.  Grp  /\  G  e. TopMnd ) )
21anbi1i 677 . 2  |-  ( ( G  e.  ( Grp 
i^i TopMnd )  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
3 fvex 5735 . . . . 5  |-  ( TopOpen `  f )  e.  _V
43a1i 11 . . . 4  |-  ( f  =  G  ->  ( TopOpen
`  f )  e. 
_V )
5 simpl 444 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
f  =  G )
65fveq2d 5725 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( inv g `  f )  =  ( inv g `  G
) )
7 istgp.2 . . . . . 6  |-  I  =  ( inv g `  G )
86, 7syl6eqr 2486 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( inv g `  f )  =  I )
9 id 20 . . . . . . 7  |-  ( j  =  ( TopOpen `  f
)  ->  j  =  ( TopOpen `  f )
)
10 fveq2 5721 . . . . . . . 8  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  ( TopOpen `  G )
)
11 istgp.1 . . . . . . . 8  |-  J  =  ( TopOpen `  G )
1210, 11syl6eqr 2486 . . . . . . 7  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  J )
139, 12sylan9eqr 2490 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
j  =  J )
1413, 13oveq12d 6092 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( j  Cn  j
)  =  ( J  Cn  J ) )
158, 14eleq12d 2504 . . . 4  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( inv g `  f )  e.  ( j  Cn  j )  <-> 
I  e.  ( J  Cn  J ) ) )
164, 15sbcied 3190 . . 3  |-  ( f  =  G  ->  ( [. ( TopOpen `  f )  /  j ]. ( inv g `  f )  e.  ( j  Cn  j )  <->  I  e.  ( J  Cn  J
) ) )
17 df-tgp 18096 . . 3  |-  TopGrp  =  {
f  e.  ( Grp 
i^i TopMnd )  |  [. ( TopOpen
`  f )  / 
j ]. ( inv g `  f )  e.  ( j  Cn  j ) }
1816, 17elrab2 3087 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  ( Grp  i^i TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
19 df-3an 938 . 2  |-  ( ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
202, 18, 193bitr4i 269 1  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2949   [.wsbc 3154    i^i cin 3312   ` cfv 5447  (class class class)co 6074   TopOpenctopn 13642   Grpcgrp 14678   inv gcminusg 14679    Cn ccn 17281  TopMndctmd 18093   TopGrpctgp 18094
This theorem is referenced by:  tgpgrp  18101  tgptmd  18102  tgpinv  18108  istgp2  18114  oppgtgp  18121  symgtgp  18124  subgtgp  18128  prdstgpd  18147  tlmtgp  18218  nrgtdrg  18721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4331
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-iota 5411  df-fv 5455  df-ov 6077  df-tgp 18096
  Copyright terms: Public domain W3C validator