MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp Unicode version

Theorem istgp 17755
Description: The predicate "is a topological group". Definition of [BourbakiTop1] p. III.1 (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istgp.1  |-  J  =  ( TopOpen `  G )
istgp.2  |-  I  =  ( inv g `  G )
Assertion
Ref Expression
istgp  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )
Dummy variables  f 
j are mutually distinct and distinct from all other variables.

Proof of Theorem istgp
StepHypRef Expression
1 elin 3360 . . 3  |-  ( G  e.  ( Grp  i^i TopMnd )  <-> 
( G  e.  Grp  /\  G  e. TopMnd ) )
21anbi1i 678 . 2  |-  ( ( G  e.  ( Grp 
i^i TopMnd )  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
3 fvex 5500 . . . . 5  |-  ( TopOpen `  f )  e.  _V
43a1i 12 . . . 4  |-  ( f  =  G  ->  ( TopOpen
`  f )  e. 
_V )
5 simpl 445 . . . . . . 7  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
f  =  G )
65fveq2d 5490 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( inv g `  f )  =  ( inv g `  G
) )
7 istgp.2 . . . . . 6  |-  I  =  ( inv g `  G )
86, 7syl6eqr 2335 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( inv g `  f )  =  I )
9 id 21 . . . . . . 7  |-  ( j  =  ( TopOpen `  f
)  ->  j  =  ( TopOpen `  f )
)
10 fveq2 5486 . . . . . . . 8  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  ( TopOpen `  G )
)
11 istgp.1 . . . . . . . 8  |-  J  =  ( TopOpen `  G )
1210, 11syl6eqr 2335 . . . . . . 7  |-  ( f  =  G  ->  ( TopOpen
`  f )  =  J )
139, 12sylan9eqr 2339 . . . . . 6  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
j  =  J )
1413, 13oveq12d 5838 . . . . 5  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( j  Cn  j
)  =  ( J  Cn  J ) )
158, 14eleq12d 2353 . . . 4  |-  ( ( f  =  G  /\  j  =  ( TopOpen `  f ) )  -> 
( ( inv g `  f )  e.  ( j  Cn  j )  <-> 
I  e.  ( J  Cn  J ) ) )
164, 15sbcied 3029 . . 3  |-  ( f  =  G  ->  ( [. ( TopOpen `  f )  /  j ]. ( inv g `  f )  e.  ( j  Cn  j )  <->  I  e.  ( J  Cn  J
) ) )
17 df-tgp 17751 . . 3  |-  TopGrp  =  {
f  e.  ( Grp 
i^i TopMnd )  |  [. ( TopOpen
`  f )  / 
j ]. ( inv g `  f )  e.  ( j  Cn  j ) }
1816, 17elrab2 2927 . 2  |-  ( G  e.  TopGrp 
<->  ( G  e.  ( Grp  i^i TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
19 df-3an 938 . 2  |-  ( ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) )  <->  ( ( G  e.  Grp  /\  G  e. TopMnd )  /\  I  e.  ( J  Cn  J
) ) )
202, 18, 193bitr4i 270 1  |-  ( G  e.  TopGrp 
<->  ( G  e.  Grp  /\  G  e. TopMnd  /\  I  e.  ( J  Cn  J
) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   _Vcvv 2790   [.wsbc 2993    i^i cin 3153   ` cfv 5222  (class class class)co 5820   TopOpenctopn 13321   Grpcgrp 14357   inv gcminusg 14358    Cn ccn 16949  TopMndctmd 17748   TopGrpctgp 17749
This theorem is referenced by:  tgpgrp  17756  tgptmd  17757  tgpinv  17763  istgp2  17769  oppgtgp  17776  symgtgp  17779  subgtgp  17783  prdstgpd  17802  tlmtgp  17873  nrgtdrg  18198
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fv 5230  df-ov 5823  df-tgp 17751
  Copyright terms: Public domain W3C validator