MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuslgra Unicode version

Theorem isuslgra 21232
Description: The property of being an undirected simple graph with loops. (Contributed by Alexander van der Vekens, 10-Aug-2017.)
Assertion
Ref Expression
isuslgra  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V USLGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
Distinct variable groups:    x, E    x, V
Allowed substitution hints:    W( x)    X( x)

Proof of Theorem isuslgra
Dummy variables  v 
e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq1 5567 . . . 4  |-  ( e  =  E  ->  (
e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } 
<->  E : dom  e -1-1-> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } ) )
21adantl 453 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
3 dmeq 5003 . . . . 5  |-  ( e  =  E  ->  dom  e  =  dom  E )
43adantl 453 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  dom  e  =  dom  E )
5 f1eq2 5568 . . . 4  |-  ( dom  e  =  dom  E  ->  ( E : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
64, 5syl 16 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( E : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
7 simpl 444 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
87pweqd 3740 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ~P v  =  ~P V )
98difeq1d 3400 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ~P v  \  { (/) } )  =  ( ~P V  \  { (/) } ) )
10 rabeq 2886 . . . 4  |-  ( ( ~P v  \  { (/)
} )  =  ( ~P V  \  { (/)
} )  ->  { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x
)  <_  2 }  =  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
11 f1eq3 5569 . . . 4  |-  ( { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 }  =  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( E : dom  E
-1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
129, 10, 113syl 19 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( E : dom  E
-1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
132, 6, 123bitrd 271 . 2  |-  ( ( v  =  V  /\  e  =  E )  ->  ( e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
14 df-uslgra 21226 . 2  |- USLGrph  =  { <. v ,  e >.  |  e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/)
} )  |  (
# `  x )  <_  2 } }
1513, 14brabga 4403 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( V USLGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2646    \ cdif 3253   (/)c0 3564   ~Pcpw 3735   {csn 3750   class class class wbr 4146   dom cdm 4811   -1-1->wf1 5384   ` cfv 5387    <_ cle 9047   2c2 9974   #chash 11538   USLGrph cuslg 21224
This theorem is referenced by:  uslgraf  21234  uslisumgra  21246  usisuslgra  21247  uslgra1  21252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-br 4147  df-opab 4201  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-uslgra 21226
  Copyright terms: Public domain W3C validator