MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Structured version   Unicode version

Theorem itg2cn 19655
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 19921 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2cn.4  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itg2cn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Distinct variable groups:    u, d, x, C    F, d, u, x    ph, u, x
Allowed substitution hint:    ph( d)

Proof of Theorem itg2cn
Dummy variables  m  y  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2cn.3 . . . . . 6  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
2 itg2cn.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
32rphalfcld 10660 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
41, 3ltsubrpd 10676 . . . . 5  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <  ( S.2 `  F
) )
53rpred 10648 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
61, 5resubcld 9465 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR )
76, 1ltnled 9220 . . . . 5  |-  ( ph  ->  ( ( ( S.2 `  F )  -  ( C  /  2 ) )  <  ( S.2 `  F
)  <->  -.  ( S.2 `  F )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
84, 7mpbid 202 . . . 4  |-  ( ph  ->  -.  ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) )
9 itg2cn.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
109ffvelrnda 5870 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,)  +oo ) )
11 elrege0 11007 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1210, 11sylib 189 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1312simpld 446 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1413rexrd 9134 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
RR* )
1512simprd 450 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
16 elxrge0 11008 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,] 
+oo )  <->  ( ( F `  x )  e.  RR*  /\  0  <_ 
( F `  x
) ) )
1714, 15, 16sylanbrc 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,]  +oo ) )
18 0xr 9131 . . . . . . . . . . . . 13  |-  0  e.  RR*
19 0le0 10081 . . . . . . . . . . . . 13  |-  0  <_  0
20 elxrge0 11008 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
2118, 19, 20mpbir2an 887 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,]  +oo )
22 ifcl 3775 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  ( 0 [,]  +oo )  /\  0  e.  ( 0 [,]  +oo ) )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,]  +oo ) )
2317, 21, 22sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  ( 0 [,] 
+oo ) )
2423adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,]  +oo ) )
25 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
2624, 25fmptd 5893 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
27 itg2cl 19624 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
2826, 27syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
29 eqid 2436 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )
3028, 29fmptd 5893 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR* )
31 frn 5597 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
3230, 31syl 16 . . . . . 6  |-  ( ph  ->  ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
336rexrd 9134 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR* )
34 supxrleub 10905 . . . . . 6  |-  ( ( ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR*  /\  ( ( S.2 `  F )  -  ( C  / 
2 ) )  e. 
RR* )  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) ,  RR* ,  <  )  <_  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
3532, 33, 34syl2anc 643 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
36 itg2cn.2 . . . . . . 7  |-  ( ph  ->  F  e. MblFn )
379, 36, 1itg2cnlem1 19653 . . . . . 6  |-  ( ph  ->  sup ( ran  (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  =  ( S.2 `  F
) )
3837breq1d 4222 . . . . 5  |-  ( ph  ->  ( sup ( ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
39 ffn 5591 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  Fn  NN )
4030, 39syl 16 . . . . . 6  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN )
41 breq1 4215 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  -> 
( z  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
4241ralrn 5873 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
43 breq2 4216 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
4443ifbid 3757 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
4544mpteq2dv 4296 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
4645fveq2d 5732 . . . . . . . . . 10  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
47 fvex 5742 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  e. 
_V
4846, 29, 47fvmpt 5806 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
4948breq1d 4222 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
5049ralbiia 2737 . . . . . . 7  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5142, 50syl6bb 253 . . . . . 6  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5240, 51syl 16 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5335, 38, 523bitr3d 275 . . . 4  |-  ( ph  ->  ( ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
548, 53mtbid 292 . . 3  |-  ( ph  ->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
55 rexnal 2716 . . 3  |-  ( E. m  e.  NN  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5654, 55sylibr 204 . 2  |-  ( ph  ->  E. m  e.  NN  -.  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
579adantr 452 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F : RR --> ( 0 [,)  +oo ) )
5836adantr 452 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F  e. MblFn )
591adantr 452 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  ( S.2 `  F
)  e.  RR )
602adantr 452 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  C  e.  RR+ )
61 simprl 733 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  m  e.  NN )
62 simprr 734 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
63 fveq2 5728 . . . . . . . . . 10  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
6463breq1d 4222 . . . . . . . . 9  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
65 eqidd 2437 . . . . . . . . 9  |-  ( x  =  y  ->  0  =  0 )
6664, 63, 65ifbieq12d 3761 . . . . . . . 8  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6766cbvmptv 4300 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6867fveq2i 5731 . . . . . 6  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )
6968breq1i 4219 . . . . 5  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
7062, 69sylnib 296 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
7157, 58, 59, 60, 61, 70itg2cnlem2 19654 . . 3  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
72 elequ1 1728 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  u  <->  y  e.  u ) )
7372, 63, 65ifbieq12d 3761 . . . . . . . . 9  |-  ( x  =  y  ->  if ( x  e.  u ,  ( F `  x ) ,  0 )  =  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7473cbvmptv 4300 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7574fveq2i 5731 . . . . . . 7  |-  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )
7675breq1i 4219 . . . . . 6  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
)
7776imbi2i 304 . . . . 5  |-  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  < 
C ) )
7877ralbii 2729 . . . 4  |-  ( A. u  e.  dom  vol (
( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
7978rexbii 2730 . . 3  |-  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  <  C )  <->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  <  C ) )
8071, 79sylibr 204 . 2  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
8156, 80rexlimddv 2834 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   A.wral 2705   E.wrex 2706    C_ wss 3320   ifcif 3739   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   ran crn 4879    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   supcsup 7445   RRcr 8989   0cc0 8990    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   RR+crp 10612   [,)cico 10918   [,]cicc 10919   volcvol 19360  MblFncmbf 19506   S.2citg2 19508
This theorem is referenced by:  itgcn  19734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-rlim 12283  df-sum 12480  df-rest 13650  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cmp 17450  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-itg2 19514  df-0p 19562
  Copyright terms: Public domain W3C validator