MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cn Unicode version

Theorem itg2cn 19112
Description: A sort of absolute continuity of the Lebesgue integral (this is the core of ftc1a 19378 which is about actual absolute continuity). (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itg2cn.1  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
itg2cn.2  |-  ( ph  ->  F  e. MblFn )
itg2cn.3  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
itg2cn.4  |-  ( ph  ->  C  e.  RR+ )
Assertion
Ref Expression
itg2cn  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Distinct variable groups:    u, d, x, C    F, d, u, x    ph, u, x
Dummy variables  m  y  z  n are mutually distinct and distinct from all other variables.
Allowed substitution hint:    ph( d)

Proof of Theorem itg2cn
StepHypRef Expression
1 itg2cn.3 . . . . . 6  |-  ( ph  ->  ( S.2 `  F
)  e.  RR )
2 itg2cn.4 . . . . . . 7  |-  ( ph  ->  C  e.  RR+ )
32rphalfcld 10397 . . . . . 6  |-  ( ph  ->  ( C  /  2
)  e.  RR+ )
41, 3ltsubrpd 10413 . . . . 5  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <  ( S.2 `  F
) )
53rpred 10385 . . . . . . 7  |-  ( ph  ->  ( C  /  2
)  e.  RR )
61, 5resubcld 9206 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR )
76, 1ltnled 8961 . . . . 5  |-  ( ph  ->  ( ( ( S.2 `  F )  -  ( C  /  2 ) )  <  ( S.2 `  F
)  <->  -.  ( S.2 `  F )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
84, 7mpbid 203 . . . 4  |-  ( ph  ->  -.  ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) )
9 itg2cn.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
10 ffvelrn 5624 . . . . . . . . . . . . . . . . 17  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  x  e.  RR )  ->  ( F `  x )  e.  ( 0 [,)  +oo ) )
119, 10sylan 459 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,)  +oo ) )
12 elrege0 10740 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1311, 12sylib 190 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1413simpld 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1514rexrd 8876 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e. 
RR* )
1613simprd 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( F `  x
) )
17 elxrge0 10741 . . . . . . . . . . . . 13  |-  ( ( F `  x )  e.  ( 0 [,] 
+oo )  <->  ( ( F `  x )  e.  RR*  /\  0  <_ 
( F `  x
) ) )
1815, 16, 17sylanbrc 647 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,]  +oo ) )
19 0xr 8873 . . . . . . . . . . . . 13  |-  0  e.  RR*
20 0le0 9822 . . . . . . . . . . . . 13  |-  0  <_  0
21 elxrge0 10741 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
2219, 20, 21mpbir2an 888 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,]  +oo )
23 ifcl 3602 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  e.  ( 0 [,]  +oo )  /\  0  e.  ( 0 [,]  +oo ) )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,]  +oo ) )
2418, 22, 23sylancl 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 )  e.  ( 0 [,] 
+oo ) )
2524adantlr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  RR )  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  e.  ( 0 [,]  +oo ) )
26 eqid 2284 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) )
2725, 26fmptd 5645 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
28 itg2cl 19081 . . . . . . . . 9  |-  ( ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
2927, 28syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  e. 
RR* )
30 eqid 2284 . . . . . . . 8  |-  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  =  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )
3129, 30fmptd 5645 . . . . . . 7  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR* )
32 frn 5360 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
3331, 32syl 17 . . . . . 6  |-  ( ph  ->  ran  (  n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR* )
346rexrd 8876 . . . . . 6  |-  ( ph  ->  ( ( S.2 `  F
)  -  ( C  /  2 ) )  e.  RR* )
35 supxrleub 10639 . . . . . 6  |-  ( ( ran  (  n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) 
C_  RR*  /\  ( ( S.2 `  F )  -  ( C  / 
2 ) )  e. 
RR* )  ->  ( sup ( ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) ,  RR* ,  <  )  <_  ( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
3633, 34, 35syl2anc 644 . . . . 5  |-  ( ph  ->  ( sup ( ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <->  A. z  e.  ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
37 itg2cn.2 . . . . . . 7  |-  ( ph  ->  F  e. MblFn )
389, 37, 1itg2cnlem1 19110 . . . . . 6  |-  ( ph  ->  sup ( ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) ,  RR* ,  <  )  =  ( S.2 `  F
) )
3938breq1d 4034 . . . . 5  |-  ( ph  ->  ( sup ( ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) , 
RR* ,  <  )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  F )  <_  ( ( S.2 `  F )  -  ( C  /  2 ) ) ) )
40 ffn 5354 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) : NN --> RR*  ->  ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) )  Fn  NN )
4131, 40syl 17 . . . . . 6  |-  ( ph  ->  ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN )
42 breq1 4027 . . . . . . . 8  |-  ( z  =  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  -> 
( z  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( (
n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
4342ralrn 5629 . . . . . . 7  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
44 breq2 4028 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( F `  x
)  <_  n  <->  ( F `  x )  <_  m
) )
4544ifbid 3584 . . . . . . . . . . . 12  |-  ( n  =  m  ->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 )  =  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )
4645mpteq2dv 4108 . . . . . . . . . . 11  |-  ( n  =  m  ->  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )
4746fveq2d 5489 . . . . . . . . . 10  |-  ( n  =  m  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) ) )
48 fvex 5499 . . . . . . . . . 10  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  e. 
_V
4947, 30, 48fvmpt 5563 . . . . . . . . 9  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) ) )
5049breq1d 4034 . . . . . . . 8  |-  ( m  e.  NN  ->  (
( ( n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) `
 m )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  <-> 
( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) ) ) )
5150ralbiia 2576 . . . . . . 7  |-  ( A. m  e.  NN  (
( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) ) `  m )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5243, 51syl6bb 254 . . . . . 6  |-  ( ( n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  n , 
( F `  x
) ,  0 ) ) ) )  Fn  NN  ->  ( A. z  e.  ran  (  n  e.  NN  |->  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5341, 52syl 17 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  (  n  e.  NN  |->  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  n ,  ( F `  x ) ,  0 ) ) ) ) z  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
5436, 39, 533bitr3d 276 . . . 4  |-  ( ph  ->  ( ( S.2 `  F
)  <_  ( ( S.2 `  F )  -  ( C  /  2
) )  <->  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) ) )
558, 54mtbid 293 . . 3  |-  ( ph  ->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
56 rexnal 2555 . . 3  |-  ( E. m  e.  NN  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  -.  A. m  e.  NN  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
5755, 56sylibr 205 . 2  |-  ( ph  ->  E. m  e.  NN  -.  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
589adantr 453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F : RR --> ( 0 [,)  +oo ) )
5937adantr 453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  F  e. MblFn )
601adantr 453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  ( S.2 `  F
)  e.  RR )
612adantr 453 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  C  e.  RR+ )
62 simprl 734 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  m  e.  NN )
63 simprr 735 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
64 fveq2 5485 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
6564breq1d 4034 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( F `  x
)  <_  m  <->  ( F `  y )  <_  m
) )
66 eqidd 2285 . . . . . . . . . . 11  |-  ( x  =  y  ->  0  =  0 )
6765, 64, 66ifbieq12d 3588 . . . . . . . . . 10  |-  ( x  =  y  ->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 )  =  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6867cbvmptv 4112 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( ( F `  y
)  <_  m , 
( F `  y
) ,  0 ) )
6968fveq2i 5488 . . . . . . . 8  |-  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )
7069breq1i 4031 . . . . . . 7  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x
)  <_  m , 
( F `  x
) ,  0 ) ) )  <_  (
( S.2 `  F )  -  ( C  / 
2 ) )  <->  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
7163, 70sylnib 297 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  -.  ( S.2 `  ( y  e.  RR  |->  if ( ( F `  y )  <_  m ,  ( F `  y ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) ) )
7258, 59, 60, 61, 62, 71itg2cnlem2 19111 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
73 elequ1 1688 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  u  <->  y  e.  u ) )
7473, 64, 66ifbieq12d 3588 . . . . . . . . . . 11  |-  ( x  =  y  ->  if ( x  e.  u ,  ( F `  x ) ,  0 )  =  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7574cbvmptv 4112 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) )
7675fveq2i 5488 . . . . . . . . 9  |-  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )
7776breq1i 4031 . . . . . . . 8  |-  ( ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C  <->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
)
7877imbi2i 305 . . . . . . 7  |-  ( ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  ( ( vol `  u )  <  d  ->  ( S.2 `  (
y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  < 
C ) )
7978ralbii 2568 . . . . . 6  |-  ( A. u  e.  dom  vol (
( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
)  <->  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y
) ,  0 ) ) )  <  C
) )
8079rexbii 2569 . . . . 5  |-  ( E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x ) ,  0 ) ) )  <  C )  <->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u )  <  d  ->  ( S.2 `  ( y  e.  RR  |->  if ( y  e.  u ,  ( F `  y ) ,  0 ) ) )  <  C ) )
8172, 80sylibr 205 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_  ( ( S.2 `  F )  -  ( C  /  2
) ) ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
8281expr 600 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( -.  ( S.2 `  (
x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) ) )
8382rexlimdva 2668 . 2  |-  ( ph  ->  ( E. m  e.  NN  -.  ( S.2 `  ( x  e.  RR  |->  if ( ( F `  x )  <_  m ,  ( F `  x ) ,  0 ) ) )  <_ 
( ( S.2 `  F
)  -  ( C  /  2 ) )  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) ) )
8457, 83mpd 16 1  |-  ( ph  ->  E. d  e.  RR+  A. u  e.  dom  vol ( ( vol `  u
)  <  d  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  u ,  ( F `  x
) ,  0 ) ) )  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545    C_ wss 3153   ifcif 3566   class class class wbr 4024    e. cmpt 4078   dom cdm 4688   ran crn 4689    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5819   supcsup 7188   RRcr 8731   0cc0 8732    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   RR+crp 10349   [,)cico 10652   [,]cicc 10653   volcvol 18817  MblFncmbf 18963   S.2citg2 18965
This theorem is referenced by:  itgcn  19191
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-ofr 6040  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-rlim 11957  df-sum 12153  df-rest 13321  df-topgen 13338  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-top 16630  df-bases 16632  df-topon 16633  df-cmp 17108  df-ovol 18818  df-vol 18819  df-mbf 18969  df-itg1 18970  df-itg2 18971  df-0p 19019
  Copyright terms: Public domain W3C validator