MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgabs Unicode version

Theorem itgabs 19594
Description: The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgabs  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itgabs.1 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
2 itgabs.2 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
31, 2itgcl 19543 . . . . . . . . . . 11  |-  ( ph  ->  S. A B  _d x  e.  CC )
43cjcld 11929 . . . . . . . . . 10  |-  ( ph  ->  ( * `  S. A B  _d x
)  e.  CC )
5 iblmbf 19527 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
62, 5syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
76, 1mbfmptcl 19397 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
87ralrimiva 2733 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
9 nfv 1626 . . . . . . . . . . . . 13  |-  F/ y  B  e.  CC
10 nfcsb1v 3227 . . . . . . . . . . . . . 14  |-  F/_ x [_ y  /  x ]_ B
1110nfel1 2534 . . . . . . . . . . . . 13  |-  F/ x [_ y  /  x ]_ B  e.  CC
12 csbeq1a 3203 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
1312eleq1d 2454 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( B  e.  CC  <->  [_ y  /  x ]_ B  e.  CC ) )
149, 11, 13cbvral 2872 . . . . . . . . . . . 12  |-  ( A. x  e.  A  B  e.  CC  <->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
158, 14sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  A  [_ y  /  x ]_ B  e.  CC )
1615r19.21bi 2748 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  [_ y  /  x ]_ B  e.  CC )
17 nfcv 2524 . . . . . . . . . . . 12  |-  F/_ y B
1817, 10, 12cbvmpt 4241 . . . . . . . . . . 11  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
1918, 2syl5eqelr 2473 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |-> 
[_ y  /  x ]_ B )  e.  L ^1 )
204, 16, 19iblmulc2 19590 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  e.  L ^1 )
214adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
* `  S. A B  _d x )  e.  CC )
2221, 16mulcld 9042 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  CC )
2322iblcn 19558 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  A  |->  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  L ^1  <->  ( (
y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) ) )  e.  L ^1  /\  ( y  e.  A  |->  ( Im `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L ^1 ) ) )
2420, 23mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( ( y  e.  A  |->  ( Re `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L ^1  /\  ( y  e.  A  |->  ( Im `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) ) )  e.  L ^1 ) )
2524simpld 446 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L ^1 )
26 ovex 6046 . . . . . . . . 9  |-  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  e.  _V
2726a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  e.  _V )
2827, 20iblabs 19588 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )  e.  L ^1 )
2922recld 11927 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
3022abscld 12166 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  e.  RR )
3122releabsd 12181 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
* `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  <_ 
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) ) )
3225, 28, 29, 30, 31itgle 19569 . . . . . 6  |-  ( ph  ->  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y  <_  S. A
( abs `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
333abscld 12166 . . . . . . . . 9  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  RR )
3433recnd 9048 . . . . . . . 8  |-  ( ph  ->  ( abs `  S. A B  _d x
)  e.  CC )
3534sqvald 11448 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) ) )
363absvalsqd 12172 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) ) )
373, 4mulcomd 9043 . . . . . . . . . 10  |-  ( ph  ->  ( S. A B  _d x  x.  (
* `  S. A B  _d x ) )  =  ( ( * `
 S. A B  _d x )  x.  S. A B  _d x ) )
3812, 17, 10cbvitg 19535 . . . . . . . . . . . 12  |-  S. A B  _d x  =  S. A [_ y  /  x ]_ B  _d y
3938oveq2i 6032 . . . . . . . . . . 11  |-  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  ( ( * `  S. A B  _d x
)  x.  S. A [_ y  /  x ]_ B  _d y
)
404, 16, 19itgmulc2 19593 . . . . . . . . . . 11  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A [_ y  /  x ]_ B  _d y
)  =  S. A
( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B )  _d y )
4139, 40syl5eq 2432 . . . . . . . . . 10  |-  ( ph  ->  ( ( * `  S. A B  _d x )  x.  S. A B  _d x )  =  S. A ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )
4236, 37, 413eqtrd 2424 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y )
4342fveq2d 5673 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( Re
`  S. A ( ( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B )  _d y ) )
4433resqcld 11477 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  e.  RR )
4544rered 11957 . . . . . . . 8  |-  ( ph  ->  ( Re `  (
( abs `  S. A B  _d x
) ^ 2 ) )  =  ( ( abs `  S. A B  _d x ) ^
2 ) )
4627, 20itgre 19560 . . . . . . . 8  |-  ( ph  ->  ( Re `  S. A ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B )  _d y )  =  S. A
( Re `  (
( * `  S. A B  _d x
)  x.  [_ y  /  x ]_ B ) )  _d y )
4743, 45, 463eqtr3d 2428 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
) ^ 2 )  =  S. A ( Re `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
4835, 47eqtr3d 2422 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  =  S. A ( Re
`  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
4912fveq2d 5673 . . . . . . . . 9  |-  ( x  =  y  ->  ( abs `  B )  =  ( abs `  [_ y  /  x ]_ B ) )
50 nfcv 2524 . . . . . . . . 9  |-  F/_ y
( abs `  B
)
51 nfcv 2524 . . . . . . . . . 10  |-  F/_ x abs
5251, 10nffv 5676 . . . . . . . . 9  |-  F/_ x
( abs `  [_ y  /  x ]_ B )
5349, 50, 52cbvitg 19535 . . . . . . . 8  |-  S. A
( abs `  B
)  _d x  =  S. A ( abs `  [_ y  /  x ]_ B )  _d y
5453oveq2i 6032 . . . . . . 7  |-  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B )  _d x )  =  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  [_ y  /  x ]_ B )  _d y )
5516abscld 12166 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  [_ y  /  x ]_ B )  e.  RR )
5616, 19iblabs 19588 . . . . . . . . 9  |-  ( ph  ->  ( y  e.  A  |->  ( abs `  [_ y  /  x ]_ B ) )  e.  L ^1 )
5734, 55, 56itgmulc2 19593 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
5821, 16absmuld 12184 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
593adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  S. A B  _d x  e.  CC )
6059abscjd 12180 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( * `  S. A B  _d x ) )  =  ( abs `  S. A B  _d x ) )
6160oveq1d 6036 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( abs `  (
* `  S. A B  _d x ) )  x.  ( abs `  [_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) ) )
6258, 61eqtrd 2420 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( abs `  ( ( * `
 S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  =  ( ( abs `  S. A B  _d x
)  x.  ( abs `  [_ y  /  x ]_ B ) ) )
6362itgeq2dv 19541 . . . . . . . 8  |-  ( ph  ->  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y  =  S. A ( ( abs `  S. A B  _d x )  x.  ( abs `  [_ y  /  x ]_ B ) )  _d y )
6457, 63eqtr4d 2423 . . . . . . 7  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  [_ y  /  x ]_ B )  _d y )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x.  [_ y  /  x ]_ B ) )  _d y )
6554, 64syl5eq 2432 . . . . . 6  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x )  =  S. A ( abs `  ( ( * `  S. A B  _d x )  x. 
[_ y  /  x ]_ B ) )  _d y )
6632, 48, 653brtr4d 4184 . . . . 5  |-  ( ph  ->  ( ( abs `  S. A B  _d x
)  x.  ( abs `  S. A B  _d x ) )  <_ 
( ( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) )
6766adantr 452 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x ) )  <_  ( ( abs `  S. A B  _d x )  x.  S. A ( abs `  B
)  _d x ) )
6833adantr 452 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  e.  RR )
697abscld 12166 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
701, 2iblabs 19588 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
7169, 70itgrecl 19557 . . . . . 6  |-  ( ph  ->  S. A ( abs `  B )  _d x  e.  RR )
7271adantr 452 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  S. A ( abs `  B )  _d x  e.  RR )
73 simpr 448 . . . . 5  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  0  <  ( abs `  S. A B  _d x ) )
74 lemul2 9796 . . . . 5  |-  ( ( ( abs `  S. A B  _d x
)  e.  RR  /\  S. A ( abs `  B
)  _d x  e.  RR  /\  ( ( abs `  S. A B  _d x )  e.  RR  /\  0  < 
( abs `  S. A B  _d x
) ) )  -> 
( ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
7568, 72, 68, 73, 74syl112anc 1188 . . . 4  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x  <->  ( ( abs `  S. A B  _d x )  x.  ( abs `  S. A B  _d x
) )  <_  (
( abs `  S. A B  _d x
)  x.  S. A
( abs `  B
)  _d x ) ) )
7667, 75mpbird 224 . . 3  |-  ( (
ph  /\  0  <  ( abs `  S. A B  _d x ) )  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
7776ex 424 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
787absge0d 12174 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
7970, 69, 78itgge0 19570 . . 3  |-  ( ph  ->  0  <_  S. A
( abs `  B
)  _d x )
80 breq1 4157 . . 3  |-  ( 0  =  ( abs `  S. A B  _d x
)  ->  ( 0  <_  S. A ( abs `  B )  _d x  <->  ( abs `  S. A B  _d x )  <_  S. A ( abs `  B
)  _d x ) )
8179, 80syl5ibcom 212 . 2  |-  ( ph  ->  ( 0  =  ( abs `  S. A B  _d x )  -> 
( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x ) )
823absge0d 12174 . . 3  |-  ( ph  ->  0  <_  ( abs `  S. A B  _d x ) )
83 0re 9025 . . . 4  |-  0  e.  RR
84 leloe 9095 . . . 4  |-  ( ( 0  e.  RR  /\  ( abs `  S. A B  _d x )  e.  RR )  ->  (
0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
8583, 33, 84sylancr 645 . . 3  |-  ( ph  ->  ( 0  <_  ( abs `  S. A B  _d x )  <->  ( 0  <  ( abs `  S. A B  _d x
)  \/  0  =  ( abs `  S. A B  _d x
) ) ) )
8682, 85mpbid 202 . 2  |-  ( ph  ->  ( 0  <  ( abs `  S. A B  _d x )  \/  0  =  ( abs `  S. A B  _d x ) ) )
8777, 81, 86mpjaod 371 1  |-  ( ph  ->  ( abs `  S. A B  _d x
)  <_  S. A
( abs `  B
)  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   _Vcvv 2900   [_csb 3195   class class class wbr 4154    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924    x. cmul 8929    < clt 9054    <_ cle 9055   2c2 9982   ^cexp 11310   *ccj 11829   Recre 11830   Imcim 11831   abscabs 11967  MblFncmbf 19374   L ^1cibl 19377   S.citg 19378
This theorem is referenced by:  ftc1a  19789  ftc1lem4  19791  itgulm  20192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cn 17214  df-cnp 17215  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-itg 19384  df-0p 19430
  Copyright terms: Public domain W3C validator