MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Unicode version

Theorem itgcl 19133
Description: The integral of an integrable function is a complex number. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcl.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgcl  |-  ( ph  ->  S. A B  _d x  e.  CC )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgcl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( Re
`  ( B  / 
( _i ^ k
) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) )
21dfitg 19119 . 2  |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
3 fzfid 11030 . . 3  |-  ( ph  ->  ( 0 ... 3
)  e.  Fin )
4 ax-icn 8791 . . . . 5  |-  _i  e.  CC
5 elfznn0 10817 . . . . . 6  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
65adantl 452 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  NN0 )
7 expcl 11116 . . . . 5  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( _i ^ k
)  e.  CC )
84, 6, 7sylancr 644 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  e.  CC )
9 elfzelz 10793 . . . . . 6  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
10 eqidd 2284 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
11 eqidd 2284 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( B  /  (
_i ^ k ) ) ) )
12 itgcl.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
13 itgmpt.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
1410, 11, 12, 13iblitg 19118 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
159, 14sylan2 460 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
1615recnd 8856 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
178, 16mulcld 8850 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
183, 17fsumcl 12201 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  e.  CC )
192, 18syl5eqel 2367 1  |-  ( ph  ->  S. A B  _d x  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ` cfv 5220  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   _ici 8734    x. cmul 8737    <_ cle 8863    / cdiv 9418   3c3 9791   NN0cn0 9960   ZZcz 10019   ...cfz 10777   ^cexp 11099   Recre 11577   sum_csu 12153   S.2citg2 18966   L ^1cibl 18967   S.citg 18968
This theorem is referenced by:  itgneg  19153  itgaddlem2  19173  itgadd  19174  itgsub  19175  itgfsum  19176  itgmulc2lem2  19182  itgmulc2  19183  itgabs  19184  itgsplitioo  19187  ditgcl  19203  ditgswap  19204  ftc1lem1  19377  ftc1lem2  19378  ftc1a  19379  ftc1lem4  19381  ftc2  19386  itgparts  19389  itgsubstlem  19390  itgulm  19779  itgsinexplem1  27159  itgsinexp  27160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4186  ax-pr 4212  ax-un 4510  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4303  df-id 4307  df-po 4312  df-so 4313  df-fr 4350  df-se 4351  df-we 4352  df-ord 4393  df-on 4394  df-lim 4395  df-suc 4396  df-om 4655  df-xp 4693  df-rel 4694  df-cnv 4695  df-co 4696  df-dm 4697  df-rn 4698  df-res 4699  df-ima 4700  df-fun 5222  df-fn 5223  df-f 5224  df-f1 5225  df-fo 5226  df-f1o 5227  df-fv 5228  df-isom 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-sup 7189  df-oi 7220  df-card 7567  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154  df-ibl 18973  df-itg 18974
  Copyright terms: Public domain W3C validator