MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Unicode version

Theorem itgcl 19101
Description: The integral of an integrable function is a complex number. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgcl.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgcl  |-  ( ph  ->  S. A B  _d x  e.  CC )
Distinct variable groups:    x, A    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgcl
StepHypRef Expression
1 eqid 2258 . . 3  |-  ( Re
`  ( B  / 
( _i ^ k
) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) )
21dfitg 19087 . 2  |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
3 fzfid 11002 . . 3  |-  ( ph  ->  ( 0 ... 3
)  e.  Fin )
4 ax-icn 8764 . . . . 5  |-  _i  e.  CC
5 elfznn0 10789 . . . . . 6  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
65adantl 454 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  NN0 )
7 expcl 11088 . . . . 5  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( _i ^ k
)  e.  CC )
84, 6, 7sylancr 647 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  e.  CC )
9 elfzelz 10765 . . . . . 6  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
10 eqidd 2259 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )
11 eqidd 2259 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( B  /  (
_i ^ k ) ) ) )
12 itgcl.2 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
13 itgmpt.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
1410, 11, 12, 13iblitg 19086 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
159, 14sylan2 462 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
1615recnd 8829 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
178, 16mulcld 8823 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
183, 17fsumcl 12172 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  e.  CC )
192, 18syl5eqel 2342 1  |-  ( ph  ->  S. A B  _d x  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   ifcif 3539   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   _ici 8707    x. cmul 8710    <_ cle 8836    / cdiv 9391   3c3 9764   NN0cn0 9933   ZZcz 9992   ...cfz 10749   ^cexp 11071   Recre 11548   sum_csu 12124   S.2citg2 18934   L ^1cibl 18935   S.citg 18936
This theorem is referenced by:  itgneg  19121  itgaddlem2  19141  itgadd  19142  itgsub  19143  itgfsum  19144  itgmulc2lem2  19150  itgmulc2  19151  itgabs  19152  itgsplitioo  19155  ditgcl  19171  ditgswap  19172  ftc1lem1  19345  ftc1lem2  19346  ftc1a  19347  ftc1lem4  19349  ftc2  19354  itgparts  19357  itgsubstlem  19358  itgulm  19747  itgsinexplem1  27117  itgsinexp  27118
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-n0 9934  df-z 9993  df-uz 10199  df-rp 10323  df-fz 10750  df-fzo 10838  df-fl 10892  df-mod 10941  df-seq 11014  df-exp 11072  df-hash 11305  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-clim 11928  df-sum 12125  df-ibl 18941  df-itg 18942
  Copyright terms: Public domain W3C validator