MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgeq2 Unicode version

Theorem itgeq2 19134
Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgeq2  |-  ( A. x  e.  A  B  =  C  ->  S. A B  _d x  =  S. A C  _d x )

Proof of Theorem itgeq2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2285 . . . . . 6  |-  RR  =  RR
2 simpl 443 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) )  ->  x  e.  A )
32con3i 127 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) )
4 iffalse 3574 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) )  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  =  0 )
53, 4syl 15 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  0 )
6 simpl 443 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) )  ->  x  e.  A )
76con3i 127 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  -.  ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) )
8 iffalse 3574 . . . . . . . . . . 11  |-  ( -.  ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) )  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 )  =  0 )
97, 8syl 15 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 )  =  0 )
105, 9eqtr4d 2320 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
11 oveq1 5867 . . . . . . . . . . . . 13  |-  ( B  =  C  ->  ( B  /  ( _i ^
k ) )  =  ( C  /  (
_i ^ k ) ) )
1211fveq2d 5531 . . . . . . . . . . . 12  |-  ( B  =  C  ->  (
Re `  ( B  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
1312breq2d 4037 . . . . . . . . . . 11  |-  ( B  =  C  ->  (
0  <_  ( Re `  ( B  /  (
_i ^ k ) ) )  <->  0  <_  ( Re `  ( C  /  ( _i ^
k ) ) ) ) )
1413anbi2d 684 . . . . . . . . . 10  |-  ( B  =  C  ->  (
( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) )  <-> 
( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ) )
15 eqidd 2286 . . . . . . . . . 10  |-  ( B  =  C  ->  0  =  0 )
1614, 12, 15ifbieq12d 3589 . . . . . . . . 9  |-  ( B  =  C  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
1710, 16ja 153 . . . . . . . 8  |-  ( ( x  e.  A  ->  B  =  C )  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
1817a1d 22 . . . . . . 7  |-  ( ( x  e.  A  ->  B  =  C )  ->  ( x  e.  RR  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
1918ralimi2 2617 . . . . . 6  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( B  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( B  /  ( _i ^
k ) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )
20 mpteq12 4101 . . . . . 6  |-  ( ( RR  =  RR  /\  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  -> 
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
211, 19, 20sylancr 644 . . . . 5  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( B  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( B  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
2221fveq2d 5531 . . . 4  |-  ( A. x  e.  A  B  =  C  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
2322oveq2d 5876 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
2423sumeq2sdv 12179 . 2  |-  ( A. x  e.  A  B  =  C  ->  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
25 eqid 2285 . . 3  |-  ( Re
`  ( B  / 
( _i ^ k
) ) )  =  ( Re `  ( B  /  ( _i ^
k ) ) )
2625dfitg 19126 . 2  |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( B  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( B  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
27 eqid 2285 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
2827dfitg 19126 . 2  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
2924, 26, 283eqtr4g 2342 1  |-  ( A. x  e.  A  B  =  C  ->  S. A B  _d x  =  S. A C  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   A.wral 2545   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   RRcr 8738   0cc0 8739   _ici 8741    x. cmul 8744    <_ cle 8870    / cdiv 9425   3c3 9798   ...cfz 10784   ^cexp 11106   Recre 11584   sum_csu 12160   S.2citg2 18973   S.citg 18975
This theorem is referenced by:  itgeq2dv  19138  itgfsum  19183  ditgeq3  19202  lhe4.4ex1a  27557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-n0 9968  df-z 10027  df-uz 10233  df-fz 10785  df-seq 11049  df-sum 12161  df-itg 18981
  Copyright terms: Public domain W3C validator