MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itggt0 Unicode version

Theorem itggt0 19601
Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itggt0.1  |-  ( ph  ->  0  <  ( vol `  A ) )
itggt0.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itggt0.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR+ )
Assertion
Ref Expression
itggt0  |-  ( ph  ->  0  <  S. A B  _d x )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem itggt0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 itggt0.2 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
2 iblmbf 19527 . . . . 5  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 itggt0.3 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR+ )
53, 4mbfdm2 19398 . . 3  |-  ( ph  ->  A  e.  dom  vol )
6 itggt0.1 . . 3  |-  ( ph  ->  0  <  ( vol `  A ) )
74rpred 10581 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
84rpge0d 10585 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
9 elrege0 10940 . . . . . . 7  |-  ( B  e.  ( 0 [,) 
+oo )  <->  ( B  e.  RR  /\  0  <_  B ) )
107, 8, 9sylanbrc 646 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ( 0 [,)  +oo ) )
11 0re 9025 . . . . . . . 8  |-  0  e.  RR
12 0le0 10014 . . . . . . . 8  |-  0  <_  0
13 elrege0 10940 . . . . . . . 8  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
1411, 12, 13mpbir2an 887 . . . . . . 7  |-  0  e.  ( 0 [,)  +oo )
1514a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
1610, 15ifclda 3710 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  B , 
0 )  e.  ( 0 [,)  +oo )
)
1716adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) 
+oo ) )
18 eqid 2388 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )
1917, 18fmptd 5833 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
20 mblss 19295 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
215, 20syl 16 . . . 4  |-  ( ph  ->  A  C_  RR )
22 rembl 19303 . . . . 5  |-  RR  e.  dom  vol
2322a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
2416adantr 452 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  B ,  0 )  e.  ( 0 [,) 
+oo ) )
25 eldifn 3414 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
2625adantl 453 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
27 iffalse 3690 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  B ,  0 )  =  0 )
2826, 27syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A ,  B ,  0 )  =  0 )
29 iftrue 3689 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  B ,  0 )  =  B )
3029mpteq2ia 4233 . . . . 5  |-  ( x  e.  A  |->  if ( x  e.  A ,  B ,  0 ) )  =  ( x  e.  A  |->  B )
3130, 3syl5eqel 2472 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  B , 
0 ) )  e. MblFn
)
3221, 23, 24, 28, 31mbfss 19406 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) )  e. MblFn )
334rpgt0d 10584 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <  B )
3421sselda 3292 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
3529adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  B ,  0 )  =  B )
3635, 4eqeltrd 2462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  B ,  0 )  e.  RR+ )
3718fvmpt2 5752 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( x  e.  A ,  B ,  0 )  e.  RR+ )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x )  =  if ( x  e.  A ,  B ,  0 ) )
3834, 36, 37syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x )  =  if ( x  e.  A ,  B ,  0 ) )
3938, 35eqtrd 2420 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x )  =  B )
4033, 39breqtrrd 4180 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `
 x ) )
4140ralrimiva 2733 . . . . 5  |-  ( ph  ->  A. x  e.  A 
0  <  ( (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x ) )
42 nfcv 2524 . . . . . . 7  |-  F/_ x
0
43 nfcv 2524 . . . . . . 7  |-  F/_ x  <
44 nffvmpt1 5677 . . . . . . 7  |-  F/_ x
( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `
 y )
4542, 43, 44nfbr 4198 . . . . . 6  |-  F/ x
0  <  ( (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  y )
46 nfv 1626 . . . . . 6  |-  F/ y 0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x )
47 fveq2 5669 . . . . . . 7  |-  ( y  =  x  ->  (
( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  y )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x ) )
4847breq2d 4166 . . . . . 6  |-  ( y  =  x  ->  (
0  <  ( (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  y )  <->  0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x ) ) )
4945, 46, 48cbvral 2872 . . . . 5  |-  ( A. y  e.  A  0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `
 y )  <->  A. x  e.  A  0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  x ) )
5041, 49sylibr 204 . . . 4  |-  ( ph  ->  A. y  e.  A 
0  <  ( (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `  y ) )
5150r19.21bi 2748 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  0  <  ( ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) `
 y ) )
525, 6, 19, 32, 51itg2gt0 19520 . 2  |-  ( ph  ->  0  <  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
537, 1, 8itgposval 19555 . 2  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
5452, 53breqtrrd 4180 1  |-  ( ph  ->  0  <  S. A B  _d x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650    \ cdif 3261    C_ wss 3264   ifcif 3683   class class class wbr 4154    e. cmpt 4208   dom cdm 4819   ` cfv 5395  (class class class)co 6021   RRcr 8923   0cc0 8924    +oocpnf 9051    < clt 9054    <_ cle 9055   RR+crp 10545   [,)cico 10851   volcvol 19228  MblFncmbf 19374   S.2citg2 19376   L ^1cibl 19377   S.citg 19378
This theorem is referenced by:  ftc1lem4  19791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-rest 13578  df-topgen 13595  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-top 16887  df-bases 16889  df-topon 16890  df-cmp 17373  df-cncf 18780  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-itg 19384  df-0p 19430
  Copyright terms: Public domain W3C validator