MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2 Unicode version

Theorem itgmulc2 19182
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
itgmulc2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2
StepHypRef Expression
1 itgmulc2.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
21recld 11673 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
32recnd 8856 . . . . . . 7  |-  ( ph  ->  ( Re `  C
)  e.  CC )
43adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
5 itgmulc2.3 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
6 iblmbf 19116 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
75, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
8 itgmulc2.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
97, 8mbfmptcl 18986 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
109recld 11673 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1110recnd 8856 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
124, 11mulcld 8850 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
139iblcn 19147 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
145, 13mpbid 203 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
1514simpld 447 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
163, 10, 15iblmulc2 19179 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e.  L ^1 )
1712, 16itgcl 19132 . . . 4  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
18 ax-icn 8791 . . . . 5  |-  _i  e.  CC
199imcld 11674 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
2019recnd 8856 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
214, 20mulcld 8850 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  CC )
2214simprd 451 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
233, 19, 22iblmulc2 19179 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e.  L ^1 )
2421, 23itgcl 19132 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
25 mulcl 8816 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
2618, 24, 25sylancr 646 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
271imcld 11674 . . . . . . . . 9  |-  ( ph  ->  ( Im `  C
)  e.  RR )
2827renegcld 9205 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
2928recnd 8856 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  CC )
3029adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  CC )
3130, 20mulcld 8850 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
3229, 19, 22iblmulc2 19179 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e.  L ^1 )
3331, 32itgcl 19132 . . . 4  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
3427recnd 8856 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  CC )
3534adantr 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
3635, 11mulcld 8850 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  CC )
3734, 10, 15iblmulc2 19179 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e.  L ^1 )
3836, 37itgcl 19132 . . . . 5  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
39 mulcl 8816 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
4018, 38, 39sylancr 646 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
4117, 26, 33, 40add4d 9030 . . 3  |-  ( ph  ->  ( ( S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
42 mulcl 8816 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  C )  e.  CC )  -> 
( _i  x.  (
Im `  C )
)  e.  CC )
4318, 34, 42sylancr 646 . . . . 5  |-  ( ph  ->  ( _i  x.  (
Im `  C )
)  e.  CC )
448, 5itgcl 19132 . . . . 5  |-  ( ph  ->  S. A B  _d x  e.  CC )
453, 43, 44adddird 8855 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  x.  S. A B  _d x )  +  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x ) ) )
468, 5itgcnval 19148 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
4746oveq2d 5835 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( ( Re `  C )  x.  ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
4810, 15itgcl 19132 . . . . . . 7  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
4919, 22itgcl 19132 . . . . . . . 8  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
50 mulcl 8816 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
5118, 49, 50sylancr 646 . . . . . . 7  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
523, 48, 51adddid 8854 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
533, 10, 15, 2, 10itgmulc2lem2 19181 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x )
5418a1i 12 . . . . . . . . 9  |-  ( ph  ->  _i  e.  CC )
553, 54, 49mul12d 9016 . . . . . . . 8  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  ( ( Re
`  C )  x.  S. A ( Im
`  B )  _d x ) ) )
563, 19, 22, 2, 19itgmulc2lem2 19181 . . . . . . . . 9  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Im `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )
5756oveq2d 5835 . . . . . . . 8  |-  ( ph  ->  ( _i  x.  (
( Re `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
5855, 57eqtrd 2316 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
5953, 58oveq12d 5837 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
6047, 52, 593eqtrd 2320 . . . . 5  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
6146oveq2d 5835 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
6243, 48, 51adddid 8854 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
6354, 34, 48mulassd 8853 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x ) ) )
6434, 10, 15, 27, 10itgmulc2lem2 19181 . . . . . . . . . 10  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )
6564oveq2d 5835 . . . . . . . . 9  |-  ( ph  ->  ( _i  x.  (
( Im `  C
)  x.  S. A
( Re `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
6663, 65eqtrd 2316 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) )
6754, 34, 54, 49mul4d 9019 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) ) )
68 ixi 9392 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
6968oveq1i 5829 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x ) )  =  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7034, 49mulcld 8850 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x )  e.  CC )
7170mulm1d 9226 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7269, 71syl5eq 2328 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  _i )  x.  (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  -u (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )
7334, 49mulneg1d 9227 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
7429, 19, 22, 28, 19itgmulc2lem2 19181 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
7573, 74eqtr3d 2318 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
7667, 72, 753eqtrd 2320 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x )
7766, 76oveq12d 5837 . . . . . . 7  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( _i  x.  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
7840, 33addcomd 9009 . . . . . . 7  |-  ( ph  ->  ( ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  =  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
7977, 78eqtrd 2316 . . . . . 6  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
8061, 62, 793eqtrd 2320 . . . . 5  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
8160, 80oveq12d 5837 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A B  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  S. A B  _d x ) )  =  ( ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) ) )
8245, 81eqtrd 2316 . . 3  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )  +  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
8335, 20mulcld 8850 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
8412, 83negsubd 9158 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  -u (
( Im `  C
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
8535, 20mulneg1d 9227 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
8685oveq2d 5835 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( ( ( Re `  C )  x.  ( Re `  B ) )  + 
-u ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
871adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
8887, 9remuld 11697 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
8984, 86, 883eqtr4d 2326 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( Re `  ( C  x.  B
) ) )
9089itgeq2dv 19130 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) )  _d x  =  S. A
( Re `  ( C  x.  B )
)  _d x )
9112, 16, 31, 32itgadd 19173 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
9290, 91eqtr3d 2318 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
9387, 9immuld 11698 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
9493itgeq2dv 19130 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) )  _d x )
9521, 23, 36, 37itgadd 19173 . . . . . . 7  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9694, 95eqtrd 2316 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9796oveq2d 5835 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( _i  x.  ( S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x  +  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
9854, 24, 38adddid 8854 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )  =  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
9997, 98eqtrd 2316 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( ( _i  x.  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
10092, 99oveq12d 5837 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( C  x.  B ) )  _d x  +  ( _i  x.  S. A
( Im `  ( C  x.  B )
)  _d x ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
10141, 82, 1003eqtr4d 2326 . 2  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
1021replimd 11676 . . 3  |-  ( ph  ->  C  =  ( ( Re `  C )  +  ( _i  x.  ( Im `  C ) ) ) )
103102oveq1d 5834 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  +  ( _i  x.  ( Im `  C ) ) )  x.  S. A B  _d x ) )
10487, 9mulcld 8850 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
1051, 8, 5iblmulc2 19179 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
106104, 105itgcnval 19148 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
107101, 103, 1063eqtr4d 2326 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685    e. cmpt 4078   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   1c1 8733   _ici 8734    + caddc 8735    x. cmul 8737    - cmin 9032   -ucneg 9033   Recre 11576   Imcim 11577  MblFncmbf 18963   L ^1cibl 18966   S.citg 18967
This theorem is referenced by:  itgabs  19183  itgsinexplem1  27147
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-ofr 6040  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-rlim 11957  df-sum 12153  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cn 16951  df-cnp 16952  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-ovol 18818  df-vol 18819  df-mbf 18969  df-itg1 18970  df-itg2 18971  df-ibl 18972  df-itg 18973  df-0p 19019
  Copyright terms: Public domain W3C validator