MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Unicode version

Theorem itgparts 19410
Description: Integration by parts. If  B (
x ) is the derivative of  A ( x ) and  D ( x ) is the derivative of  C ( x ), and  E  =  ( A  x.  B ) ( X ) and  F  =  ( A  x.  B ) ( Y ), then under suitable integrability and differentiability assumptions, the integral of  A  x.  D from  X to  Y is equal to  F  -  E minus the integral of  B  x.  C. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x  |-  ( ph  ->  X  e.  RR )
itgparts.y  |-  ( ph  ->  Y  e.  RR )
itgparts.le  |-  ( ph  ->  X  <_  Y )
itgparts.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.c  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.d  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.ad  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L ^1 )
itgparts.bc  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L ^1 )
itgparts.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgparts.dc  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
itgparts.e  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
itgparts.f  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
Assertion
Ref Expression
itgparts  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Distinct variable groups:    ph, x    x, X    x, Y    x, E    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem itgparts
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
2 cncff 18413 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
31, 2syl 15 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
4 eqid 2296 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
54fmpt 5697 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
63, 5sylibr 203 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
76r19.21bi 2654 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
8 ioossicc 10751 . . . . . . 7  |-  ( X (,) Y )  C_  ( X [,] Y )
98sseli 3189 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
10 itgparts.c . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
11 cncff 18413 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  C )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  C ) : ( X [,] Y ) --> CC )
1210, 11syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C ) : ( X [,] Y ) --> CC )
13 eqid 2296 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  C )  =  ( x  e.  ( X [,] Y
)  |->  C )
1413fmpt 5697 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) C  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  C ) : ( X [,] Y
) --> CC )
1512, 14sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) C  e.  CC )
1615r19.21bi 2654 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  C  e.  CC )
179, 16sylan2 460 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  CC )
187, 17mulcld 8871 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( B  x.  C )  e.  CC )
19 itgparts.bc . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L ^1 )
2018, 19itgcl 19154 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( B  x.  C )  _d x  e.  CC )
21 itgparts.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
22 cncff 18413 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> CC )
2321, 22syl 15 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> CC )
24 eqid 2296 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
2524fmpt 5697 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) A  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> CC )
2623, 25sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  CC )
2726r19.21bi 2654 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
289, 27sylan2 460 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  CC )
29 itgparts.d . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
30 cncff 18413 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  D )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  D ) : ( X (,) Y ) --> CC )
3129, 30syl 15 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D ) : ( X (,) Y ) --> CC )
32 eqid 2296 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  D )  =  ( x  e.  ( X (,) Y
)  |->  D )
3332fmpt 5697 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) D  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  D ) : ( X (,) Y
) --> CC )
3431, 33sylibr 203 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) D  e.  CC )
3534r19.21bi 2654 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  CC )
3628, 35mulcld 8871 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( A  x.  D )  e.  CC )
37 itgparts.ad . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L ^1 )
3836, 37itgcl 19154 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  e.  CC )
3920, 38pncan2d 9175 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  S. ( X (,) Y ) ( A  x.  D )  _d x )
4018, 19, 36, 37itgadd 19195 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( S. ( X (,) Y
) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D )  _d x ) )
41 fveq2 5541 . . . . . . 7  |-  ( x  =  t  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t ) )
42 nfcv 2432 . . . . . . 7  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)
43 nfcv 2432 . . . . . . . . 9  |-  F/_ x RR
44 nfcv 2432 . . . . . . . . 9  |-  F/_ x  _D
45 nfmpt1 4125 . . . . . . . . 9  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )
4643, 44, 45nfov 5897 . . . . . . . 8  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )
47 nfcv 2432 . . . . . . . 8  |-  F/_ x
t
4846, 47nffv 5548 . . . . . . 7  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t
)
4941, 42, 48cbvitg 19146 . . . . . 6  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  _d x  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t
50 itgparts.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
51 itgparts.y . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
52 itgparts.le . . . . . . 7  |-  ( ph  ->  X  <_  Y )
53 ax-resscn 8810 . . . . . . . . . . 11  |-  RR  C_  CC
5453a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
55 iccssre 10747 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
5650, 51, 55syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
5727, 16mulcld 8871 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  x.  C )  e.  CC )
58 eqid 2296 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5958tgioo2 18325 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
60 iccntr 18342 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6150, 51, 60syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6254, 56, 57, 59, 58, 61dvmptntr 19336 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) ) )
63 reex 8844 . . . . . . . . . . . 12  |-  RR  e.  _V
6463prid1 3747 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6564a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
6654, 56, 27, 59, 58, 61dvmptntr 19336 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
67 itgparts.da . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6866, 67eqtr3d 2330 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6954, 56, 16, 59, 58, 61dvmptntr 19336 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  C ) ) )
70 itgparts.dc . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7169, 70eqtr3d 2330 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7265, 28, 7, 68, 17, 35, 71dvmptmul 19326 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( D  x.  A ) ) ) )
7335, 28mulcomd 8872 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( D  x.  A )  =  ( A  x.  D ) )
7473oveq2d 5890 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( B  x.  C )  +  ( D  x.  A ) )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
7574mpteq2dva 4122 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( D  x.  A ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7662, 72, 753eqtrd 2332 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7758addcn 18385 . . . . . . . . . 10  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7877a1i 10 . . . . . . . . 9  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
7958mulcn 18387 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
8079a1i 10 . . . . . . . . . 10  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
81 resmpt 5016 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  C ) )
828, 81ax-mp 8 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  C )
83 rescncf 18417 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
848, 10, 83mpsyl 59 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
8582, 84syl5eqelr 2381 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  ( ( X (,) Y
) -cn-> CC ) )
8658, 80, 1, 85cncfmpt2f 18434 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
87 resmpt 5016 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  A ) )
888, 87ax-mp 8 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  A )
89 rescncf 18417 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
908, 21, 89mpsyl 59 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
9188, 90syl5eqelr 2381 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  A )  e.  ( ( X (,) Y
) -cn-> CC ) )
9258, 80, 91, 29cncfmpt2f 18434 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9358, 78, 86, 92cncfmpt2f 18434 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9476, 93eqeltrd 2370 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9518, 19, 36, 37ibladd 19191 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  L ^1 )
9676, 95eqeltrd 2370 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  L ^1 )
9758, 80, 21, 10cncfmpt2f 18434 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )  e.  ( ( X [,] Y
) -cn-> CC ) )
9850, 51, 52, 94, 96, 97ftc2 19407 . . . . . 6  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
9949, 98syl5eq 2340 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
10076fveq1d 5543 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x ) )
101100adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x ) )
102 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  x  e.  ( X (,) Y ) )
103 ovex 5899 . . . . . . . 8  |-  ( ( B  x.  C )  +  ( A  x.  D ) )  e. 
_V
104 eqid 2296 . . . . . . . . 9  |-  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  =  ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) )
105104fvmpt2 5624 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  /\  ( ( B  x.  C )  +  ( A  x.  D ) )  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x )  =  ( ( B  x.  C
)  +  ( A  x.  D ) ) )
106102, 103, 105sylancl 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( (
x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x )  =  ( ( B  x.  C )  +  ( A  x.  D
) ) )
107101, 106eqtrd 2328 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
108107itgeq2dv 19152 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  S. ( X (,) Y
) ( ( B  x.  C )  +  ( A  x.  D
) )  _d x )
10950rexrd 8897 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
11051rexrd 8897 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
111 ubicc2 10769 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
112109, 110, 52, 111syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
113 ovex 5899 . . . . . . . . . 10  |-  ( A  x.  C )  e. 
_V
114113ax-gen 1536 . . . . . . . . 9  |-  A. x
( A  x.  C
)  e.  _V
115 csbexg 3104 . . . . . . . . 9  |-  ( ( Y  e.  RR  /\  A. x ( A  x.  C )  e.  _V )  ->  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )
11651, 114, 115sylancl 643 . . . . . . . 8  |-  ( ph  ->  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )
117 eqid 2296 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) )  =  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) )
118117fvmpts 5619 . . . . . . . 8  |-  ( ( Y  e.  ( X [,] Y )  /\  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
119112, 116, 118syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
120 itgparts.f . . . . . . . 8  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
12151, 120csbied 3136 . . . . . . 7  |-  ( ph  ->  [_ Y  /  x ]_ ( A  x.  C
)  =  F )
122119, 121eqtrd 2328 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  F )
123 lbicc2 10768 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
124109, 110, 52, 123syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  X  e.  ( X [,] Y ) )
125 csbexg 3104 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A. x ( A  x.  C )  e.  _V )  ->  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )
12650, 114, 125sylancl 643 . . . . . . . 8  |-  ( ph  ->  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )
127117fvmpts 5619 . . . . . . . 8  |-  ( ( X  e.  ( X [,] Y )  /\  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
128124, 126, 127syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
129 itgparts.e . . . . . . . 8  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
13050, 129csbied 3136 . . . . . . 7  |-  ( ph  ->  [_ X  /  x ]_ ( A  x.  C
)  =  E )
131128, 130eqtrd 2328 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  E )
132122, 131oveq12d 5892 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X ) )  =  ( F  -  E
) )
13399, 108, 1323eqtr3d 2336 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( F  -  E ) )
13440, 133eqtr3d 2330 . . 3  |-  ( ph  ->  ( S. ( X (,) Y ) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D
)  _d x )  =  ( F  -  E ) )
135134oveq1d 5889 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  ( ( F  -  E )  -  S. ( X (,) Y
) ( B  x.  C )  _d x ) )
13639, 135eqtr3d 2330 1  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   [_csb 3094    C_ wss 3165   {cpr 3654   class class class wbr 4039    e. cmpt 4093   ran crn 4706    |` cres 4707   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752    + caddc 8756    x. cmul 8758   RR*cxr 8882    <_ cle 8884    - cmin 9053   (,)cioo 10672   [,]cicc 10675   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   intcnt 16770    Cn ccn 16970    tX ctx 17271   -cn->ccncf 18396   L ^1cibl 18988   S.citg 18989    _D cdv 19229
This theorem is referenced by:  itgsinexplem1  27851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-itg 18995  df-0p 19041  df-limc 19232  df-dv 19233
  Copyright terms: Public domain W3C validator