MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgparts Unicode version

Theorem itgparts 19799
Description: Integration by parts. If  B (
x ) is the derivative of  A ( x ) and  D ( x ) is the derivative of  C ( x ), and  E  =  ( A  x.  B ) ( X ) and  F  =  ( A  x.  B ) ( Y ), then under suitable integrability and differentiability assumptions, the integral of  A  x.  D from  X to  Y is equal to  F  -  E minus the integral of  B  x.  C. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
itgparts.x  |-  ( ph  ->  X  e.  RR )
itgparts.y  |-  ( ph  ->  Y  e.  RR )
itgparts.le  |-  ( ph  ->  X  <_  Y )
itgparts.a  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.c  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
itgparts.b  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.d  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
itgparts.ad  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L ^1 )
itgparts.bc  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L ^1 )
itgparts.da  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgparts.dc  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
itgparts.e  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
itgparts.f  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
Assertion
Ref Expression
itgparts  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Distinct variable groups:    ph, x    x, X    x, Y    x, E    x, F
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem itgparts
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 itgparts.b . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( X (,) Y
) -cn-> CC ) )
2 cncff 18795 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  B )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  B ) : ( X (,) Y ) --> CC )
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B ) : ( X (,) Y ) --> CC )
4 eqid 2388 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  B )  =  ( x  e.  ( X (,) Y
)  |->  B )
54fmpt 5830 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) B  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  B ) : ( X (,) Y
) --> CC )
63, 5sylibr 204 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) B  e.  CC )
76r19.21bi 2748 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  B  e.  CC )
8 ioossicc 10929 . . . . . . 7  |-  ( X (,) Y )  C_  ( X [,] Y )
98sseli 3288 . . . . . 6  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
10 itgparts.c . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC ) )
11 cncff 18795 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  C )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  C ) : ( X [,] Y ) --> CC )
1210, 11syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  C ) : ( X [,] Y ) --> CC )
13 eqid 2388 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  C )  =  ( x  e.  ( X [,] Y
)  |->  C )
1413fmpt 5830 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) C  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  C ) : ( X [,] Y
) --> CC )
1512, 14sylibr 204 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) C  e.  CC )
1615r19.21bi 2748 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  C  e.  CC )
179, 16sylan2 461 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  CC )
187, 17mulcld 9042 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( B  x.  C )  e.  CC )
19 itgparts.bc . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  L ^1 )
2018, 19itgcl 19543 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( B  x.  C )  _d x  e.  CC )
21 itgparts.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC ) )
22 cncff 18795 . . . . . . . . 9  |-  ( ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( X [,] Y )
-cn-> CC )  ->  (
x  e.  ( X [,] Y )  |->  A ) : ( X [,] Y ) --> CC )
2321, 22syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> CC )
24 eqid 2388 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
2524fmpt 5830 . . . . . . . 8  |-  ( A. x  e.  ( X [,] Y ) A  e.  CC  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> CC )
2623, 25sylibr 204 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( X [,] Y ) A  e.  CC )
2726r19.21bi 2748 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  A  e.  CC )
289, 27sylan2 461 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  CC )
29 itgparts.d . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  ( ( X (,) Y
) -cn-> CC ) )
30 cncff 18795 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  D )  e.  ( ( X (,) Y )
-cn-> CC )  ->  (
x  e.  ( X (,) Y )  |->  D ) : ( X (,) Y ) --> CC )
3129, 30syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D ) : ( X (,) Y ) --> CC )
32 eqid 2388 . . . . . . . 8  |-  ( x  e.  ( X (,) Y )  |->  D )  =  ( x  e.  ( X (,) Y
)  |->  D )
3332fmpt 5830 . . . . . . 7  |-  ( A. x  e.  ( X (,) Y ) D  e.  CC  <->  ( x  e.  ( X (,) Y
)  |->  D ) : ( X (,) Y
) --> CC )
3431, 33sylibr 204 . . . . . 6  |-  ( ph  ->  A. x  e.  ( X (,) Y ) D  e.  CC )
3534r19.21bi 2748 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  CC )
3628, 35mulcld 9042 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( A  x.  D )  e.  CC )
37 itgparts.ad . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  L ^1 )
3836, 37itgcl 19543 . . 3  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  e.  CC )
3920, 38pncan2d 9346 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  S. ( X (,) Y ) ( A  x.  D )  _d x )
4018, 19, 36, 37itgadd 19584 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( S. ( X (,) Y
) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D )  _d x ) )
41 fveq2 5669 . . . . . . 7  |-  ( x  =  t  ->  (
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t ) )
42 nfcv 2524 . . . . . . 7  |-  F/_ t
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)
43 nfcv 2524 . . . . . . . . 9  |-  F/_ x RR
44 nfcv 2524 . . . . . . . . 9  |-  F/_ x  _D
45 nfmpt1 4240 . . . . . . . . 9  |-  F/_ x
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )
4643, 44, 45nfov 6044 . . . . . . . 8  |-  F/_ x
( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )
47 nfcv 2524 . . . . . . . 8  |-  F/_ x
t
4846, 47nffv 5676 . . . . . . 7  |-  F/_ x
( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t
)
4941, 42, 48cbvitg 19535 . . . . . 6  |-  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  _d x  =  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t
50 itgparts.x . . . . . . 7  |-  ( ph  ->  X  e.  RR )
51 itgparts.y . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
52 itgparts.le . . . . . . 7  |-  ( ph  ->  X  <_  Y )
53 ax-resscn 8981 . . . . . . . . . . 11  |-  RR  C_  CC
5453a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
55 iccssre 10925 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( X [,] Y
)  C_  RR )
5650, 51, 55syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
5727, 16mulcld 9042 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X [,] Y ) )  ->  ( A  x.  C )  e.  CC )
58 eqid 2388 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5958tgioo2 18706 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
60 iccntr 18724 . . . . . . . . . . 11  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6150, 51, 60syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( X [,] Y ) )  =  ( X (,) Y
) )
6254, 56, 57, 59, 58, 61dvmptntr 19725 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) ) )
63 reex 9015 . . . . . . . . . . . 12  |-  RR  e.  _V
6463prid1 3856 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6564a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
6654, 56, 27, 59, 58, 61dvmptntr 19725 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  A ) ) )
67 itgparts.da . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6866, 67eqtr3d 2422 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
6954, 56, 16, 59, 58, 61dvmptntr 19725 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( RR  _D  ( x  e.  ( X (,) Y )  |->  C ) ) )
70 itgparts.dc . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7169, 70eqtr3d 2422 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  C ) )  =  ( x  e.  ( X (,) Y )  |->  D ) )
7265, 28, 7, 68, 17, 35, 71dvmptmul 19715 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X (,) Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( D  x.  A ) ) ) )
7335, 28mulcomd 9043 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( D  x.  A )  =  ( A  x.  D ) )
7473oveq2d 6037 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( B  x.  C )  +  ( D  x.  A ) )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
7574mpteq2dva 4237 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( D  x.  A ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7662, 72, 753eqtrd 2424 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  =  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) )
7758addcn 18767 . . . . . . . . . 10  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7877a1i 11 . . . . . . . . 9  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
7958mulcn 18769 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
8079a1i 11 . . . . . . . . . 10  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
81 resmpt 5132 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  C ) )
828, 81ax-mp 8 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  C )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  C )
83 rescncf 18799 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
848, 10, 83mpsyl 61 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  C )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
8582, 84syl5eqelr 2473 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  ( ( X (,) Y
) -cn-> CC ) )
8658, 80, 1, 85cncfmpt2f 18816 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( B  x.  C
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
87 resmpt 5132 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y
)  |->  A ) )
888, 87ax-mp 8 . . . . . . . . . . 11  |-  ( ( x  e.  ( X [,] Y )  |->  A )  |`  ( X (,) Y ) )  =  ( x  e.  ( X (,) Y ) 
|->  A )
89 rescncf 18799 . . . . . . . . . . . 12  |-  ( ( X (,) Y ) 
C_  ( X [,] Y )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> CC )  ->  (
( x  e.  ( X [,] Y ) 
|->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y ) -cn-> CC ) ) )
908, 21, 89mpsyl 61 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  A )  |`  ( X (,) Y ) )  e.  ( ( X (,) Y )
-cn-> CC ) )
9188, 90syl5eqelr 2473 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  A )  e.  ( ( X (,) Y
) -cn-> CC ) )
9258, 80, 91, 29cncfmpt2f 18816 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( A  x.  D
) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9358, 78, 86, 92cncfmpt2f 18816 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9476, 93eqeltrd 2462 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  ( ( X (,) Y
) -cn-> CC ) )
9518, 19, 36, 37ibladd 19580 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  e.  L ^1 )
9676, 95eqeltrd 2462 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) )  e.  L ^1 )
9758, 80, 21, 10cncfmpt2f 18816 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) )  e.  ( ( X [,] Y
) -cn-> CC ) )
9850, 51, 52, 94, 96, 97ftc2 19796 . . . . . 6  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  t )  _d t  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
9949, 98syl5eq 2432 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  ( ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  -  (
( x  e.  ( X [,] Y ) 
|->  ( A  x.  C
) ) `  X
) ) )
10076fveq1d 5671 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x
)  =  ( ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x ) )
101100adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x ) )
102 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  x  e.  ( X (,) Y ) )
103 ovex 6046 . . . . . . . 8  |-  ( ( B  x.  C )  +  ( A  x.  D ) )  e. 
_V
104 eqid 2388 . . . . . . . . 9  |-  ( x  e.  ( X (,) Y )  |->  ( ( B  x.  C )  +  ( A  x.  D ) ) )  =  ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) )
105104fvmpt2 5752 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  /\  ( ( B  x.  C )  +  ( A  x.  D ) )  e.  _V )  ->  ( ( x  e.  ( X (,) Y
)  |->  ( ( B  x.  C )  +  ( A  x.  D
) ) ) `  x )  =  ( ( B  x.  C
)  +  ( A  x.  D ) ) )
106102, 103, 105sylancl 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( (
x  e.  ( X (,) Y )  |->  ( ( B  x.  C
)  +  ( A  x.  D ) ) ) `  x )  =  ( ( B  x.  C )  +  ( A  x.  D
) ) )
107101, 106eqtrd 2420 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( RR  _D  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) ) `
 x )  =  ( ( B  x.  C )  +  ( A  x.  D ) ) )
108107itgeq2dv 19541 . . . . 5  |-  ( ph  ->  S. ( X (,) Y ) ( ( RR  _D  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) ) `  x )  _d x  =  S. ( X (,) Y
) ( ( B  x.  C )  +  ( A  x.  D
) )  _d x )
10950rexrd 9068 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
11051rexrd 9068 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
111 ubicc2 10947 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
112109, 110, 52, 111syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
113 ovex 6046 . . . . . . . . . 10  |-  ( A  x.  C )  e. 
_V
114113ax-gen 1552 . . . . . . . . 9  |-  A. x
( A  x.  C
)  e.  _V
115 csbexg 3205 . . . . . . . . 9  |-  ( ( Y  e.  RR  /\  A. x ( A  x.  C )  e.  _V )  ->  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )
11651, 114, 115sylancl 644 . . . . . . . 8  |-  ( ph  ->  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )
117 eqid 2388 . . . . . . . . 9  |-  ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) )  =  ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) )
118117fvmpts 5747 . . . . . . . 8  |-  ( ( Y  e.  ( X [,] Y )  /\  [_ Y  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
119112, 116, 118syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  [_ Y  /  x ]_ ( A  x.  C )
)
120 itgparts.f . . . . . . . 8  |-  ( (
ph  /\  x  =  Y )  ->  ( A  x.  C )  =  F )
12151, 120csbied 3237 . . . . . . 7  |-  ( ph  ->  [_ Y  /  x ]_ ( A  x.  C
)  =  F )
122119, 121eqtrd 2420 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  Y )  =  F )
123 lbicc2 10946 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
124109, 110, 52, 123syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  X  e.  ( X [,] Y ) )
125 csbexg 3205 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A. x ( A  x.  C )  e.  _V )  ->  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )
12650, 114, 125sylancl 644 . . . . . . . 8  |-  ( ph  ->  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )
127117fvmpts 5747 . . . . . . . 8  |-  ( ( X  e.  ( X [,] Y )  /\  [_ X  /  x ]_ ( A  x.  C
)  e.  _V )  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
128124, 126, 127syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  [_ X  /  x ]_ ( A  x.  C )
)
129 itgparts.e . . . . . . . 8  |-  ( (
ph  /\  x  =  X )  ->  ( A  x.  C )  =  E )
13050, 129csbied 3237 . . . . . . 7  |-  ( ph  ->  [_ X  /  x ]_ ( A  x.  C
)  =  E )
131128, 130eqtrd 2420 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X )  =  E )
132122, 131oveq12d 6039 . . . . 5  |-  ( ph  ->  ( ( ( x  e.  ( X [,] Y )  |->  ( A  x.  C ) ) `
 Y )  -  ( ( x  e.  ( X [,] Y
)  |->  ( A  x.  C ) ) `  X ) )  =  ( F  -  E
) )
13399, 108, 1323eqtr3d 2428 . . . 4  |-  ( ph  ->  S. ( X (,) Y ) ( ( B  x.  C )  +  ( A  x.  D ) )  _d x  =  ( F  -  E ) )
13440, 133eqtr3d 2422 . . 3  |-  ( ph  ->  ( S. ( X (,) Y ) ( B  x.  C )  _d x  +  S. ( X (,) Y ) ( A  x.  D
)  _d x )  =  ( F  -  E ) )
135134oveq1d 6036 . 2  |-  ( ph  ->  ( ( S. ( X (,) Y ) ( B  x.  C
)  _d x  +  S. ( X (,) Y
) ( A  x.  D )  _d x )  -  S. ( X (,) Y ) ( B  x.  C
)  _d x )  =  ( ( F  -  E )  -  S. ( X (,) Y
) ( B  x.  C )  _d x ) )
13639, 135eqtr3d 2422 1  |-  ( ph  ->  S. ( X (,) Y ) ( A  x.  D )  _d x  =  ( ( F  -  E )  -  S. ( X (,) Y ) ( B  x.  C )  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1717   A.wral 2650   _Vcvv 2900   [_csb 3195    C_ wss 3264   {cpr 3759   class class class wbr 4154    e. cmpt 4208   ran crn 4820    |` cres 4821   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923    + caddc 8927    x. cmul 8929   RR*cxr 9053    <_ cle 9055    - cmin 9224   (,)cioo 10849   [,]cicc 10852   TopOpenctopn 13577   topGenctg 13593  ℂfldccnfld 16627   intcnt 17005    Cn ccn 17211    tX ctx 17514   -cn->ccncf 18778   L ^1cibl 19377   S.citg 19378    _D cdv 19618
This theorem is referenced by:  itgsinexplem1  27417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cc 8249  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-disj 4125  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-ofr 6246  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-omul 6666  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-acn 7763  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-rlim 12211  df-sum 12408  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-cmp 17373  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-ovol 19229  df-vol 19230  df-mbf 19380  df-itg1 19381  df-itg2 19382  df-ibl 19383  df-itg 19384  df-0p 19430  df-limc 19621  df-dv 19622
  Copyright terms: Public domain W3C validator