MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgposval Unicode version

Theorem itgposval 19254
Description: The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblrelem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
itgreval.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
itgposval.3  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
itgposval  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem itgposval
StepHypRef Expression
1 iblrelem.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
2 itgreval.2 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
31, 2itgrevallem1 19253 . 2  |-  ( ph  ->  S. A B  _d x  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B
) ,  -u B ,  0 ) ) ) ) )
4 itgposval.3 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  B )
54ex 423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  ->  0  <_  B )
)
65pm4.71rd 616 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  <->  ( 0  <_  B  /\  x  e.  A )
) )
7 ancom 437 . . . . . . 7  |-  ( ( 0  <_  B  /\  x  e.  A )  <->  ( x  e.  A  /\  0  <_  B ) )
86, 7syl6rbb 253 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  0  <_  B )  <->  x  e.  A ) )
98ifbid 3659 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( x  e.  A ,  B , 
0 ) )
109mpteq2dv 4188 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )
1110fveq2d 5612 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
121, 4iblposlem 19250 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) )  =  0 )
1311, 12oveq12d 5963 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 ) ) )  -  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u B ) ,  -u B ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  -  0 ) )
141, 4iblpos 19251 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) ) )
152, 14mpbid 201 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR ) )
1615simprd 449 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  RR )
1716recnd 8951 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  e.  CC )
1817subid1d 9236 . 2  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) )  -  0 )  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
193, 13, 183eqtrd 2394 1  |-  ( ph  ->  S. A B  _d x  =  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  B ,  0 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   ifcif 3641   class class class wbr 4104    e. cmpt 4158   ` cfv 5337  (class class class)co 5945   RRcr 8826   0cc0 8827    <_ cle 8958    - cmin 9127   -ucneg 9128  MblFncmbf 19073   S.2citg2 19075   L ^1cibl 19076   S.citg 19077
This theorem is referenced by:  itgreval  19255  itgitg2  19265  itgaddlem1  19281  itgmulc2lem1  19290  itggt0  19300  itgcn  19301  itgaddnclem1  25498  itgmulc2nclem1  25506  itggt0cn  25512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-disj 4075  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-ofr 6166  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-rp 10447  df-xadd 10545  df-ioo 10752  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-sum 12256  df-xmet 16475  df-met 16476  df-ovol 18928  df-vol 18929  df-mbf 19079  df-itg1 19080  df-itg2 19081  df-ibl 19082  df-itg 19083  df-0p 19129
  Copyright terms: Public domain W3C validator