MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplit Unicode version

Theorem itgsplit 19710
Description: The  S. integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgsplit.i  |-  ( ph  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
itgsplit.u  |-  ( ph  ->  U  =  ( A  u.  B ) )
itgsplit.c  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
itgsplit.a  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
itgsplit.b  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
Assertion
Ref Expression
itgsplit  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Distinct variable groups:    x, A    x, B    ph, x    x, U    x, V
Allowed substitution hint:    C( x)

Proof of Theorem itgsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgsplit.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  L ^1 )
2 iblmbf 19642 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  C )  e.  L ^1 
->  ( x  e.  A  |->  C )  e. MblFn )
31, 2syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  C )  e. MblFn )
4 ssun1 3497 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  B
)
5 itgsplit.u . . . . . . . . . . . 12  |-  ( ph  ->  U  =  ( A  u.  B ) )
64, 5syl5sseqr 3384 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  U )
76sselda 3335 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  U )
8 itgsplit.c . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  V )
97, 8syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  V )
103, 9mbfdm2 19513 . . . . . . . 8  |-  ( ph  ->  A  e.  dom  vol )
1110adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A  e.  dom  vol )
12 itgsplit.b . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  B  |->  C )  e.  L ^1 )
13 iblmbf 19642 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  C )  e.  L ^1 
->  ( x  e.  B  |->  C )  e. MblFn )
1412, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  B  |->  C )  e. MblFn )
15 ssun2 3498 . . . . . . . . . . . 12  |-  B  C_  ( A  u.  B
)
1615, 5syl5sseqr 3384 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  U )
1716sselda 3335 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  U )
1817, 8syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  V )
1914, 18mbfdm2 19513 . . . . . . . 8  |-  ( ph  ->  B  e.  dom  vol )
2019adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  B  e.  dom  vol )
21 itgsplit.i . . . . . . . 8  |-  ( ph  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
2221adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( vol * `  ( A  i^i  B ) )  =  0 )
235adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  U  =  ( A  u.  B ) )
245eleq2d 2497 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  U  <->  x  e.  ( A  u.  B ) ) )
25 elun 3475 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2624, 25syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  U  <->  ( x  e.  A  \/  x  e.  B )
) )
2726biimpa 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  x  e.  B )
)
283, 9mbfmptcl 19512 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
2914, 18mbfmptcl 19512 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  CC )
3028, 29jaodan 761 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  \/  x  e.  B ) )  ->  C  e.  CC )
3127, 30syldan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  U )  ->  C  e.  CC )
3231adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  C  e.  CC )
33 ax-icn 9033 . . . . . . . . . . . . . 14  |-  _i  e.  CC
34 elfznn0 11067 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
3534adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  NN0 )
36 expcl 11382 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( _i ^ k
)  e.  CC )
3733, 35, 36sylancr 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  e.  CC )
3837adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  e.  CC )
39 elfzelz 11043 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
4039adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  k  e.  ZZ )
41 ine0 9453 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
42 expne0i 11395 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
4333, 41, 42mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
4440, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
_i ^ k )  =/=  0 )
4544adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
_i ^ k )  =/=  0 )
4632, 38, 45divcld 9774 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  ( C  /  ( _i ^
k ) )  e.  CC )
4746recld 11982 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )
48 0re 9075 . . . . . . . . . 10  |-  0  e.  RR
49 ifcl 3762 . . . . . . . . . 10  |-  ( ( ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5047, 48, 49sylancl 644 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
5150rexrd 9118 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
52 max1 10757 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  ( C  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) )
5348, 47, 52sylancr 645 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )
54 elxrge0 10992 . . . . . . . 8  |-  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )
5551, 53, 54sylanbrc 646 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  U )  ->  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
56 ifan 3765 . . . . . . . 8  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5756mpteq2i 4279 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
58 ifan 3765 . . . . . . . 8  |-  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  B ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
5958mpteq2i 4279 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  B ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
60 ifan 3765 . . . . . . . 8  |-  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  U ,  if ( 0  <_  (
Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
6160mpteq2i 4279 . . . . . . 7  |-  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  U ,  if ( 0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ,  0 ) )
62 eqidd 2431 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
63 eqidd 2431 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6462, 63, 1, 9iblitg 19643 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6539, 64sylan2 461 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
66 eqidd 2431 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )
67 eqidd 2431 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
Re `  ( C  /  ( _i ^
k ) ) )  =  ( Re `  ( C  /  (
_i ^ k ) ) ) )
6866, 67, 12, 18iblitg 19643 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  RR )
6939, 68sylan2 461 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
7011, 20, 22, 23, 55, 57, 59, 61, 65, 69itg2split 19624 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
7170oveq2d 6083 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( _i ^ k )  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7264recnd 9098 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) )  e.  CC )
7339, 72sylan2 461 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7469recnd 9098 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  CC )
7537, 73, 74adddid 9096 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( C  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( C  /  (
_i ^ k ) ) ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7671, 75eqtrd 2462 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  =  ( ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
7776sumeq2dv 12480 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  sum_ k  e.  ( 0 ... 3 ) ( ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
78 fzfid 11295 . . . 4  |-  ( ph  ->  ( 0 ... 3
)  e.  Fin )
7937, 73mulcld 9092 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8037, 74mulcld 9092 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  e.  CC )
8178, 79, 80fsumadd 12515 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )  +  ( ( _i ^ k )  x.  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
8277, 81eqtrd 2462 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  =  (
sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) ) )
83 eqid 2430 . . 3  |-  ( Re
`  ( C  / 
( _i ^ k
) ) )  =  ( Re `  ( C  /  ( _i ^
k ) ) )
8483dfitg 19644 . 2  |-  S. U C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  U  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8583dfitg 19644 . . 3  |-  S. A C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8683dfitg 19644 . . 3  |-  S. B C  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) )
8785, 86oveq12i 6079 . 2  |-  ( S. A C  _d x  +  S. B C  _d x )  =  ( sum_ k  e.  ( 0 ... 3 ) ( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( C  /  (
_i ^ k ) ) ) ) ,  ( Re `  ( C  /  ( _i ^
k ) ) ) ,  0 ) ) ) )  +  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  B  /\  0  <_ 
( Re `  ( C  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( C  / 
( _i ^ k
) ) ) ,  0 ) ) ) ) )
8882, 84, 873eqtr4g 2487 1  |-  ( ph  ->  S. U C  _d x  =  ( S. A C  _d x  +  S. B C  _d x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2593    u. cun 3305    i^i cin 3306   ifcif 3726   class class class wbr 4199    e. cmpt 4253   dom cdm 4864   ` cfv 5440  (class class class)co 6067   CCcc 8972   RRcr 8973   0cc0 8974   _ici 8976    + caddc 8977    x. cmul 8979    +oocpnf 9101   RR*cxr 9103    <_ cle 9105    / cdiv 9661   3c3 10034   NN0cn0 10205   ZZcz 10266   [,]cicc 10903   ...cfz 11027   ^cexp 11365   Recre 11885   sum_csu 12462   vol
*covol 19342   volcvol 19343  MblFncmbf 19489   S.2citg2 19491   L ^1cibl 19492   S.citg 19493
This theorem is referenced by:  itgspliticc  19711  itgsplitioo  19712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-inf2 7580  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051  ax-pre-sup 9052  ax-addf 9053
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-int 4038  df-iun 4082  df-disj 4170  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-se 4529  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-isom 5449  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-of 6291  df-ofr 6292  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-1o 6710  df-2o 6711  df-oadd 6714  df-er 6891  df-map 7006  df-pm 7007  df-en 7096  df-dom 7097  df-sdom 7098  df-fin 7099  df-fi 7402  df-sup 7432  df-oi 7463  df-card 7810  df-cda 8032  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-nn 9985  df-2 10042  df-3 10043  df-4 10044  df-n0 10206  df-z 10267  df-uz 10473  df-q 10559  df-rp 10597  df-xneg 10694  df-xadd 10695  df-xmul 10696  df-ioo 10904  df-ico 10906  df-icc 10907  df-fz 11028  df-fzo 11119  df-fl 11185  df-mod 11234  df-seq 11307  df-exp 11366  df-hash 11602  df-cj 11887  df-re 11888  df-im 11889  df-sqr 12023  df-abs 12024  df-clim 12265  df-sum 12463  df-rest 13633  df-topgen 13650  df-psmet 16677  df-xmet 16678  df-met 16679  df-bl 16680  df-mopn 16681  df-top 16946  df-bases 16948  df-topon 16949  df-cmp 17433  df-ovol 19344  df-vol 19345  df-mbf 19495  df-itg1 19496  df-itg2 19497  df-ibl 19498  df-itg 19499
  Copyright terms: Public domain W3C validator