MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunifval Unicode version

Theorem itunifval 8010
Description: Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could concievably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunifval  |-  ( A  e.  V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
Distinct variable group:    x, A, y
Allowed substitution hints:    U( x, y)    V( x, y)

Proof of Theorem itunifval
StepHypRef Expression
1 elex 2771 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 rdgeq2 6393 . . . 4  |-  ( x  =  A  ->  rec ( ( y  e. 
_V  |->  U. y ) ,  x )  =  rec ( ( y  e. 
_V  |->  U. y ) ,  A ) )
32reseq1d 4942 . . 3  |-  ( x  =  A  ->  ( rec ( ( y  e. 
_V  |->  U. y ) ,  x )  |`  om )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
4 ituni.u . . 3  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
5 rdgfun 6397 . . . 4  |-  Fun  rec ( ( y  e. 
_V  |->  U. y ) ,  A )
6 omex 7312 . . . 4  |-  om  e.  _V
7 resfunexg 5671 . . . 4  |-  ( ( Fun  rec ( ( y  e.  _V  |->  U. y ) ,  A
)  /\  om  e.  _V )  ->  ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om )  e.  _V )
85, 6, 7mp2an 656 . . 3  |-  ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om )  e.  _V
93, 4, 8fvmpt 5536 . 2  |-  ( A  e.  _V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
101, 9syl 17 1  |-  ( A  e.  V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   _Vcvv 2763   U.cuni 3801    e. cmpt 4051   omcom 4628    |` cres 4663   Fun wfun 4667   ` cfv 4673   reccrdg 6390
This theorem is referenced by:  itunifn  8011  ituni0  8012  itunisuc  8013
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-recs 6356  df-rdg 6391
  Copyright terms: Public domain W3C validator