MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunctb Unicode version

Theorem iunctb 8192
Description: The countable union of countable sets is countable (indexed union version of unictb 8193). (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iunctb  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunctb
StepHypRef Expression
1 eqid 2284 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  B
)
2 simpl 443 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  ~<_  om )
3 reldom 6865 . . . . . . . 8  |-  Rel  ~<_
43brrelexi 4728 . . . . . . 7  |-  ( A  ~<_  om  ->  A  e.  _V )
54adantr 451 . . . . . 6  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  e.  _V )
6 ovex 5845 . . . . . . 7  |-  ( om 
^m  B )  e. 
_V
76rgenw 2611 . . . . . 6  |-  A. x  e.  A  ( om  ^m  B )  e.  _V
8 iunexg 5729 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( om  ^m  B )  e.  _V )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
95, 7, 8sylancl 643 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
10 acncc 8062 . . . . 5  |- AC  om  =  _V
119, 10syl6eleqr 2375 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  om )
12 acndom 7674 . . . 4  |-  ( A  ~<_  om  ->  ( U_ x  e.  A  ( om  ^m  B )  e. AC  om 
->  U_ x  e.  A  ( om  ^m  B )  e. AC  A ) )
132, 11, 12sylc 56 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  A )
14 simpr 447 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A. x  e.  A  B  ~<_  om )
15 omex 7340 . . . . . 6  |-  om  e.  _V
16 xpdom1g 6955 . . . . . 6  |-  ( ( om  e.  _V  /\  A  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om )
)
1715, 2, 16sylancr 644 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om ) )
18 xpomen 7639 . . . . 5  |-  ( om 
X.  om )  ~~  om
19 domentr 6916 . . . . 5  |-  ( ( ( A  X.  om )  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( A  X.  om )  ~<_  om )
2017, 18, 19sylancl 643 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  om )
213brrelexi 4728 . . . . . . 7  |-  ( B  ~<_  om  ->  B  e.  _V )
2221ralimi 2619 . . . . . 6  |-  ( A. x  e.  A  B  ~<_  om  ->  A. x  e.  A  B  e.  _V )
23 iunexg 5729 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  _V )  ->  U_ x  e.  A  B  e.  _V )
244, 22, 23syl2an 463 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  e.  _V )
25 omelon 7343 . . . . . 6  |-  om  e.  On
26 onenon 7578 . . . . . 6  |-  ( om  e.  On  ->  om  e.  dom  card )
2725, 26ax-mp 8 . . . . 5  |-  om  e.  dom  card
28 numacn 7672 . . . . 5  |-  ( U_ x  e.  A  B  e.  _V  ->  ( om  e.  dom  card  ->  om  e. AC  U_ x  e.  A  B
) )
2924, 27, 28ee10 1366 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  om  e. AC  U_ x  e.  A  B )
30 acndom2 7677 . . . 4  |-  ( ( A  X.  om )  ~<_  om  ->  ( om  e. AC  U_ x  e.  A  B  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B ) )
3120, 29, 30sylc 56 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B )
321, 13, 14, 31iundomg 8159 . 2  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  ( A  X.  om ) )
33 domtr 6910 . 2  |-  ( (
U_ x  e.  A  B  ~<_  ( A  X.  om )  /\  ( A  X.  om )  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
3432, 20, 33syl2anc 642 1  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1685   A.wral 2544   _Vcvv 2789   {csn 3641   U_ciun 3906   class class class wbr 4024   Oncon0 4391   omcom 4655    X. cxp 4686    dom cdm 4688  (class class class)co 5820    ^m cmap 6768    ~~ cen 6856    ~<_ cdom 6857   cardccrd 7564  AC wacn 7567
This theorem is referenced by:  unictb  8193  heiborlem3  25948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cc 8057
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-oi 7221  df-card 7568  df-acn 7571
  Copyright terms: Public domain W3C validator