MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunctb Unicode version

Theorem iunctb 8198
Description: The countable union of countable sets is countable (indexed union version of unictb 8199). (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iunctb  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunctb
StepHypRef Expression
1 eqid 2285 . . 3  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  B
)
2 simpl 443 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  ~<_  om )
3 reldom 6871 . . . . . . . 8  |-  Rel  ~<_
43brrelexi 4731 . . . . . . 7  |-  ( A  ~<_  om  ->  A  e.  _V )
54adantr 451 . . . . . 6  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A  e.  _V )
6 ovex 5885 . . . . . . 7  |-  ( om 
^m  B )  e. 
_V
76rgenw 2612 . . . . . 6  |-  A. x  e.  A  ( om  ^m  B )  e.  _V
8 iunexg 5769 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( om  ^m  B )  e.  _V )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
95, 7, 8sylancl 643 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e.  _V )
10 acncc 8068 . . . . 5  |- AC  om  =  _V
119, 10syl6eleqr 2376 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  om )
12 acndom 7680 . . . 4  |-  ( A  ~<_  om  ->  ( U_ x  e.  A  ( om  ^m  B )  e. AC  om 
->  U_ x  e.  A  ( om  ^m  B )  e. AC  A ) )
132, 11, 12sylc 56 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  ( om  ^m  B )  e. AC  A )
14 simpr 447 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  A. x  e.  A  B  ~<_  om )
15 omex 7346 . . . . . 6  |-  om  e.  _V
16 xpdom1g 6961 . . . . . 6  |-  ( ( om  e.  _V  /\  A  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om )
)
1715, 2, 16sylancr 644 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  ( om  X.  om ) )
18 xpomen 7645 . . . . 5  |-  ( om 
X.  om )  ~~  om
19 domentr 6922 . . . . 5  |-  ( ( ( A  X.  om )  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( A  X.  om )  ~<_  om )
2017, 18, 19sylancl 643 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  ~<_  om )
213brrelexi 4731 . . . . . . 7  |-  ( B  ~<_  om  ->  B  e.  _V )
2221ralimi 2620 . . . . . 6  |-  ( A. x  e.  A  B  ~<_  om  ->  A. x  e.  A  B  e.  _V )
23 iunexg 5769 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  _V )  ->  U_ x  e.  A  B  e.  _V )
244, 22, 23syl2an 463 . . . . 5  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  e.  _V )
25 omelon 7349 . . . . . 6  |-  om  e.  On
26 onenon 7584 . . . . . 6  |-  ( om  e.  On  ->  om  e.  dom  card )
2725, 26ax-mp 8 . . . . 5  |-  om  e.  dom  card
28 numacn 7678 . . . . 5  |-  ( U_ x  e.  A  B  e.  _V  ->  ( om  e.  dom  card  ->  om  e. AC  U_ x  e.  A  B
) )
2924, 27, 28ee10 1366 . . . 4  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  om  e. AC  U_ x  e.  A  B )
30 acndom2 7683 . . . 4  |-  ( ( A  X.  om )  ~<_  om  ->  ( om  e. AC  U_ x  e.  A  B  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B ) )
3120, 29, 30sylc 56 . . 3  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  ( A  X.  om )  e. AC  U_ x  e.  A  B )
321, 13, 14, 31iundomg 8165 . 2  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  ( A  X.  om ) )
33 domtr 6916 . 2  |-  ( (
U_ x  e.  A  B  ~<_  ( A  X.  om )  /\  ( A  X.  om )  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
3432, 20, 33syl2anc 642 1  |-  ( ( A  ~<_  om  /\  A. x  e.  A  B  ~<_  om )  ->  U_ x  e.  A  B  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1686   A.wral 2545   _Vcvv 2790   {csn 3642   U_ciun 3907   class class class wbr 4025   Oncon0 4394   omcom 4658    X. cxp 4689   dom cdm 4691  (class class class)co 5860    ^m cmap 6774    ~~ cen 6862    ~<_ cdom 6863   cardccrd 7570  AC wacn 7573
This theorem is referenced by:  unictb  8199  heiborlem3  26548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cc 8063
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-oi 7227  df-card 7574  df-acn 7577
  Copyright terms: Public domain W3C validator