MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundif2 Unicode version

Theorem iundif2 4126
Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use intiin 4113 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iundif2  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iundif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldif 3298 . . . . 5  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
21rexbii 2699 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C ) )
3 r19.42v 2830 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C ) )
4 rexnal 2685 . . . . . 6  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  A. x  e.  A  y  e.  C )
5 vex 2927 . . . . . . 7  |-  y  e. 
_V
6 eliin 4066 . . . . . . 7  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
75, 6ax-mp 8 . . . . . 6  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
84, 7xchbinxr 303 . . . . 5  |-  ( E. x  e.  A  -.  y  e.  C  <->  -.  y  e.  |^|_ x  e.  A  C )
98anbi2i 676 . . . 4  |-  ( ( y  e.  B  /\  E. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C )
)
102, 3, 93bitri 263 . . 3  |-  ( E. x  e.  A  y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
11 eliun 4065 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  E. x  e.  A  y  e.  ( B  \  C ) )
12 eldif 3298 . . 3  |-  ( y  e.  ( B  \  |^|_ x  e.  A  C
)  <->  ( y  e.  B  /\  -.  y  e.  |^|_ x  e.  A  C ) )
1310, 11, 123bitr4i 269 . 2  |-  ( y  e.  U_ x  e.  A  ( B  \  C )  <->  y  e.  ( B  \  |^|_ x  e.  A  C )
)
1413eqriv 2409 1  |-  U_ x  e.  A  ( B  \  C )  =  ( B  \  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   _Vcvv 2924    \ cdif 3285   U_ciun 4061   |^|_ciin 4062
This theorem is referenced by:  iuncld  17072  pnrmopn  17369  alexsublem  18036  bcth3  19245  iundifdifd  23973  iundifdif  23974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-v 2926  df-dif 3291  df-iun 4063  df-iin 4064
  Copyright terms: Public domain W3C validator