MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfi Unicode version

Theorem iunfi 7140
Description: The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 7141. Note that  B depends on  x, i.e. can be thought of as  B ( x ). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
iunfi  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin )  ->  U_ x  e.  A  B  e.  Fin )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem iunfi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2737 . . . 4  |-  ( w  =  (/)  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  (/)  B  e.  Fin ) )
2 iuneq1 3919 . . . . . 6  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  U_ x  e.  (/)  B )
3 0iun 3960 . . . . . 6  |-  U_ x  e.  (/)  B  =  (/)
42, 3syl6eq 2332 . . . . 5  |-  ( w  =  (/)  ->  U_ x  e.  w  B  =  (/) )
54eleq1d 2350 . . . 4  |-  ( w  =  (/)  ->  ( U_ x  e.  w  B  e.  Fin  <->  (/)  e.  Fin )
)
61, 5imbi12d 311 . . 3  |-  ( w  =  (/)  ->  ( ( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  (/)  B  e.  Fin  -> 
(/)  e.  Fin )
) )
7 raleq 2737 . . . 4  |-  ( w  =  y  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  y  B  e.  Fin ) )
8 iuneq1 3919 . . . . 5  |-  ( w  =  y  ->  U_ x  e.  w  B  =  U_ x  e.  y  B )
98eleq1d 2350 . . . 4  |-  ( w  =  y  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  y  B  e.  Fin ) )
107, 9imbi12d 311 . . 3  |-  ( w  =  y  ->  (
( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin ) ) )
11 raleq 2737 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A. x  e.  w  B  e.  Fin 
<-> 
A. x  e.  ( y  u.  { z } ) B  e. 
Fin ) )
12 iuneq1 3919 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  U_ x  e.  w  B  =  U_ x  e.  ( y  u.  {
z } ) B )
1312eleq1d 2350 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( U_ x  e.  w  B  e.  Fin 
<-> 
U_ x  e.  ( y  u.  { z } ) B  e. 
Fin ) )
1411, 13imbi12d 311 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin ) 
<->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) ) )
15 raleq 2737 . . . 4  |-  ( w  =  A  ->  ( A. x  e.  w  B  e.  Fin  <->  A. x  e.  A  B  e.  Fin ) )
16 iuneq1 3919 . . . . 5  |-  ( w  =  A  ->  U_ x  e.  w  B  =  U_ x  e.  A  B
)
1716eleq1d 2350 . . . 4  |-  ( w  =  A  ->  ( U_ x  e.  w  B  e.  Fin  <->  U_ x  e.  A  B  e.  Fin ) )
1815, 17imbi12d 311 . . 3  |-  ( w  =  A  ->  (
( A. x  e.  w  B  e.  Fin  ->  U_ x  e.  w  B  e.  Fin )  <->  ( A. x  e.  A  B  e.  Fin  ->  U_ x  e.  A  B  e.  Fin ) ) )
19 0fin 7083 . . . 4  |-  (/)  e.  Fin
2019a1i 10 . . 3  |-  ( A. x  e.  (/)  B  e. 
Fin  ->  (/)  e.  Fin )
21 ssun1 3339 . . . . . . 7  |-  y  C_  ( y  u.  {
z } )
22 ssralv 3238 . . . . . . 7  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  A. x  e.  y  B  e.  Fin ) )
2321, 22ax-mp 8 . . . . . 6  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  A. x  e.  y  B  e.  Fin )
2423imim1i 54 . . . . 5  |-  ( ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  -> 
( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin ) )
25 iunxun 3984 . . . . . . 7  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
26 nfcv 2420 . . . . . . . . . . 11  |-  F/_ y B
27 nfcsb1v 3114 . . . . . . . . . . 11  |-  F/_ x [_ y  /  x ]_ B
28 csbeq1a 3090 . . . . . . . . . . 11  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
2926, 27, 28cbviun 3940 . . . . . . . . . 10  |-  U_ x  e.  { z } B  =  U_ y  e.  {
z } [_ y  /  x ]_ B
30 vex 2792 . . . . . . . . . . 11  |-  z  e. 
_V
31 csbeq1 3085 . . . . . . . . . . 11  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
3230, 31iunxsn 3982 . . . . . . . . . 10  |-  U_ y  e.  { z } [_ y  /  x ]_ B  =  [_ z  /  x ]_ B
3329, 32eqtri 2304 . . . . . . . . 9  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
34 ssun2 3340 . . . . . . . . . . 11  |-  { z }  C_  ( y  u.  { z } )
3530snid 3668 . . . . . . . . . . 11  |-  z  e. 
{ z }
3634, 35sselii 3178 . . . . . . . . . 10  |-  z  e.  ( y  u.  {
z } )
37 nfcsb1v 3114 . . . . . . . . . . . 12  |-  F/_ x [_ z  /  x ]_ B
3837nfel1 2430 . . . . . . . . . . 11  |-  F/ x [_ z  /  x ]_ B  e.  Fin
39 csbeq1a 3090 . . . . . . . . . . . 12  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4039eleq1d 2350 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( B  e.  Fin  <->  [_ z  /  x ]_ B  e.  Fin ) )
4138, 40rspc 2879 . . . . . . . . . 10  |-  ( z  e.  ( y  u. 
{ z } )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  [_ z  /  x ]_ B  e. 
Fin ) )
4236, 41ax-mp 8 . . . . . . . . 9  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  [_ z  /  x ]_ B  e.  Fin )
4333, 42syl5eqel 2368 . . . . . . . 8  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  U_ x  e.  { z } B  e.  Fin )
44 unfi 7120 . . . . . . . 8  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  U_ x  e.  { z } B  e.  Fin )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
Fin )
4543, 44sylan2 460 . . . . . . 7  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  A. x  e.  ( y  u.  { z } ) B  e.  Fin )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
Fin )
4625, 45syl5eqel 2368 . . . . . 6  |-  ( (
U_ x  e.  y  B  e.  Fin  /\  A. x  e.  ( y  u.  { z } ) B  e.  Fin )  ->  U_ x  e.  ( y  u.  { z } ) B  e. 
Fin )
4746expcom 424 . . . . 5  |-  ( A. x  e.  ( y  u.  { z } ) B  e.  Fin  ->  (
U_ x  e.  y  B  e.  Fin  ->  U_ x  e.  ( y  u.  { z } ) B  e.  Fin ) )
4824, 47sylcom 25 . . . 4  |-  ( ( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  -> 
( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) )
4948a1i 10 . . 3  |-  ( y  e.  Fin  ->  (
( A. x  e.  y  B  e.  Fin  ->  U_ x  e.  y  B  e.  Fin )  ->  ( A. x  e.  ( y  u.  {
z } ) B  e.  Fin  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  Fin ) ) )
506, 10, 14, 18, 20, 49findcard2 7094 . 2  |-  ( A  e.  Fin  ->  ( A. x  e.  A  B  e.  Fin  ->  U_ x  e.  A  B  e.  Fin ) )
5150imp 418 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin )  ->  U_ x  e.  A  B  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685   A.wral 2544   [_csb 3082    u. cun 3151    C_ wss 3153   (/)c0 3456   {csn 3641   U_ciun 3906   Fincfn 6859
This theorem is referenced by:  unifi  7141  ixpfi  7149  marypha2  7188  ackbij1lem9  7850  ackbij1lem10  7851  fsum2dlem  12229  fsumcom2  12233  fsumiun  12275  hashiun  12276  ackbijnn  12282  ablfaclem3  15318  txcmplem2  17332  alexsubALTlem3  17739  aannenlem1  19704  fsumvma  20448  isunscov  24484  locfincmp  25715  fiphp3d  26313  hbt  26745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-fin 6863
  Copyright terms: Public domain W3C validator