MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuniin Unicode version

Theorem iuniin 3889
Description: Law combining indexed union with indexed intersection. Eq. 14 in in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin  |-  U_ x  e.  A  |^|_ y  e.  B  C  C_  |^|_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    x, y    y, A    x, B
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuniin
StepHypRef Expression
1 r19.12 2631 . . . 4  |-  ( E. x  e.  A  A. y  e.  B  z  e.  C  ->  A. y  e.  B  E. x  e.  A  z  e.  C )
2 vex 2766 . . . . . 6  |-  z  e. 
_V
3 eliin 3884 . . . . . 6  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  z  e.  C ) )
42, 3ax-mp 10 . . . . 5  |-  ( z  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  z  e.  C )
54rexbii 2543 . . . 4  |-  ( E. x  e.  A  z  e.  |^|_ y  e.  B  C 
<->  E. x  e.  A  A. y  e.  B  z  e.  C )
6 eliun 3883 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
76ralbii 2542 . . . 4  |-  ( A. y  e.  B  z  e.  U_ x  e.  A  C 
<-> 
A. y  e.  B  E. x  e.  A  z  e.  C )
81, 5, 73imtr4i 259 . . 3  |-  ( E. x  e.  A  z  e.  |^|_ y  e.  B  C  ->  A. y  e.  B  z  e.  U_ x  e.  A  C )
9 eliun 3883 . . 3  |-  ( z  e.  U_ x  e.  A  |^|_ y  e.  B  C 
<->  E. x  e.  A  z  e.  |^|_ y  e.  B  C )
10 eliin 3884 . . . 4  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  B  U_ x  e.  A  C  <->  A. y  e.  B  z  e.  U_ x  e.  A  C
) )
112, 10ax-mp 10 . . 3  |-  ( z  e.  |^|_ y  e.  B  U_ x  e.  A  C  <->  A. y  e.  B  z  e.  U_ x  e.  A  C )
128, 9, 113imtr4i 259 . 2  |-  ( z  e.  U_ x  e.  A  |^|_ y  e.  B  C  ->  z  e.  |^|_ y  e.  B  U_ x  e.  A  C )
1312ssriv 3159 1  |-  U_ x  e.  A  |^|_ y  e.  B  C  C_  |^|_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    <-> wb 178    e. wcel 1621   A.wral 2518   E.wrex 2519   _Vcvv 2763    C_ wss 3127   U_ciun 3879   |^|_ciin 3880
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ral 2523  df-rex 2524  df-v 2765  df-in 3134  df-ss 3141  df-iun 3881  df-iin 3882
  Copyright terms: Public domain W3C validator