Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunpwss Unicode version

Theorem iunpwss 4148
 Description: Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
iunpwss
Distinct variable group:   ,

Proof of Theorem iunpwss
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssiun 4101 . . 3
2 eliun 4065 . . . 4
3 vex 2927 . . . . . 6
43elpw 3773 . . . . 5
54rexbii 2699 . . . 4
62, 5bitri 241 . . 3
73elpw 3773 . . . 4
8 uniiun 4112 . . . . 5
98sseq2i 3341 . . . 4
107, 9bitri 241 . . 3
111, 6, 103imtr4i 258 . 2
1211ssriv 3320 1
 Colors of variables: wff set class Syntax hints:   wcel 1721  wrex 2675   wss 3288  cpw 3767  cuni 3983  ciun 4061 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-v 2926  df-in 3295  df-ss 3302  df-pw 3769  df-uni 3984  df-iun 4063
 Copyright terms: Public domain W3C validator