MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss2 Unicode version

Theorem iunss2 4128
Description: A subclass condition on the members of two indexed classes 
C ( x ) and  D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4038. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Distinct variable groups:    x, y    x, B    y, C    x, D
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 4125 . . 3  |-  ( E. y  e.  B  C  C_  D  ->  C  C_  U_ y  e.  B  D )
21ralimi 2773 . 2  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  A. x  e.  A  C  C_  U_ y  e.  B  D )
3 iunss 4124 . 2  |-  ( U_ x  e.  A  C  C_ 
U_ y  e.  B  D 
<-> 
A. x  e.  A  C  C_  U_ y  e.  B  D )
42, 3sylibr 204 1  |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  B  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2697   E.wrex 2698    C_ wss 3312   U_ciun 4085
This theorem is referenced by:  iunxdif2  4131  oaass  6795  odi  6813  omass  6814  oelim2  6829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-iun 4087
  Copyright terms: Public domain W3C validator