MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaao Structured version   Unicode version

Theorem jaao 496
Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.)
Hypotheses
Ref Expression
jaao.1  |-  ( ph  ->  ( ps  ->  ch ) )
jaao.2  |-  ( th 
->  ( ta  ->  ch ) )
Assertion
Ref Expression
jaao  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)

Proof of Theorem jaao
StepHypRef Expression
1 jaao.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21adantr 452 . 2  |-  ( (
ph  /\  th )  ->  ( ps  ->  ch ) )
3 jaao.2 . . 3  |-  ( th 
->  ( ta  ->  ch ) )
43adantl 453 . 2  |-  ( (
ph  /\  th )  ->  ( ta  ->  ch ) )
52, 4jaod 370 1  |-  ( (
ph  /\  th )  ->  ( ( ps  \/  ta )  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359
This theorem is referenced by:  pm3.44  498  pm3.48  807  prlem1  929  ordtri1  4606  ordun  4675  suc11  4677  funun  5487  poxp  6450  suc11reg  7566  rankunb  7768  gruun  8673  sibfof  24646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
  Copyright terms: Public domain W3C validator