Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.15nn0 Unicode version

Theorem jm2.15nn0 27096
Description: Lemma 2.15 of [JonesMatijasevic] p. 695. Yrm is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.15nn0  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  -  B )  ||  (
( A Yrm  N )  -  ( B Yrm  N ) ) )

Proof of Theorem jm2.15nn0
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 10238 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2 eluzelz 10238 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
3 zsubcl 10061 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
41, 2, 3syl2an 463 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  e.  ZZ )
5 0z 10035 . . . . . 6  |-  0  e.  ZZ
6 congid 27058 . . . . . 6  |-  ( ( ( A  -  B
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  -  B
)  ||  ( 0  -  0 ) )
74, 5, 6sylancl 643 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
0  -  0 ) )
8 rmy0 27014 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
9 rmy0 27014 . . . . . 6  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B Yrm  0 )  =  0 )
108, 9oveqan12d 5877 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm  0 )  -  ( B Yrm  0 ) )  =  ( 0  -  0 ) )
117, 10breqtrrd 4049 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  0 )  -  ( B Yrm  0 ) ) )
12 1z 10053 . . . . . 6  |-  1  e.  ZZ
13 congid 27058 . . . . . 6  |-  ( ( ( A  -  B
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( A  -  B
)  ||  ( 1  -  1 ) )
144, 12, 13sylancl 643 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
1  -  1 ) )
15 rmy1 27015 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
16 rmy1 27015 . . . . . 6  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B Yrm  1 )  =  1 )
1715, 16oveqan12d 5877 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm  1 )  -  ( B Yrm  1 ) )  =  ( 1  -  1 ) )
1814, 17breqtrrd 4049 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  1 )  -  ( B Yrm  1 ) ) )
19 pm3.43 832 . . . . 5  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) ) )  /\  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) ) )
2043ad2ant2 977 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  e.  ZZ )
21 2z 10054 . . . . . . . . . . 11  |-  2  e.  ZZ
2221a1i 10 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  2  e.  ZZ )
23 simp2l 981 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  A  e.  ( ZZ>= `  2 )
)
24 nnz 10045 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  b  e.  ZZ )
25243ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  b  e.  ZZ )
26 frmy 26999 . . . . . . . . . . . . 13  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2726fovcl 5949 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
2823, 25, 27syl2anc 642 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A Yrm  b )  e.  ZZ )
291adantr 451 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  A  e.  ZZ )
30293ad2ant2 977 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  A  e.  ZZ )
3128, 30zmulcld 10123 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
( A Yrm  b )  x.  A )  e.  ZZ )
3222, 31zmulcld 10123 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
2  x.  ( ( A Yrm  b )  x.  A
) )  e.  ZZ )
33 simp2r 982 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  B  e.  ( ZZ>= `  2 )
)
3426fovcl 5949 . . . . . . . . . . . 12  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( B Yrm  b )  e.  ZZ )
3533, 25, 34syl2anc 642 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( B Yrm  b )  e.  ZZ )
362adantl 452 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
37363ad2ant2 977 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  B  e.  ZZ )
3835, 37zmulcld 10123 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
( B Yrm  b )  x.  B )  e.  ZZ )
3922, 38zmulcld 10123 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
2  x.  ( ( B Yrm  b )  x.  B
) )  e.  ZZ )
40 peano2zm 10062 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  (
b  -  1 )  e.  ZZ )
4124, 40syl 15 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
b  -  1 )  e.  ZZ )
42413ad2ant1 976 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
b  -  1 )  e.  ZZ )
4326fovcl 5949 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  -  1 )  e.  ZZ )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
4423, 42, 43syl2anc 642 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A Yrm  ( b  -  1 ) )  e.  ZZ )
4526fovcl 5949 . . . . . . . . . 10  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  (
b  -  1 )  e.  ZZ )  -> 
( B Yrm  ( b  - 
1 ) )  e.  ZZ )
4633, 42, 45syl2anc 642 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( B Yrm  ( b  -  1 ) )  e.  ZZ )
47 congid 27058 . . . . . . . . . . 11  |-  ( ( ( A  -  B
)  e.  ZZ  /\  2  e.  ZZ )  ->  ( A  -  B
)  ||  ( 2  -  2 ) )
4820, 21, 47sylancl 643 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( 2  -  2 ) )
49 simp3r 984 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( A Yrm  b )  -  ( B Yrm  b ) ) )
50 iddvds 12542 . . . . . . . . . . . 12  |-  ( ( A  -  B )  e.  ZZ  ->  ( A  -  B )  ||  ( A  -  B
) )
5120, 50syl 15 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( A  -  B
) )
52 congmul 27054 . . . . . . . . . . 11  |-  ( ( ( ( A  -  B )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  ( B Yrm  b )  e.  ZZ )  /\  ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
( A  -  B
)  ||  ( ( A Yrm  b )  -  ( B Yrm  b ) )  /\  ( A  -  B
)  ||  ( A  -  B ) ) )  ->  ( A  -  B )  ||  (
( ( A Yrm  b )  x.  A )  -  ( ( B Yrm  b )  x.  B ) ) )
5320, 28, 35, 30, 37, 49, 51, 52syl322anc 1210 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( ( A Yrm  b )  x.  A )  -  ( ( B Yrm  b )  x.  B ) ) )
54 congmul 27054 . . . . . . . . . 10  |-  ( ( ( ( A  -  B )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )  /\  ( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
( B Yrm  b )  x.  B )  e.  ZZ )  /\  ( ( A  -  B )  ||  ( 2  -  2 )  /\  ( A  -  B )  ||  ( ( ( A Yrm  b )  x.  A )  -  ( ( B Yrm  b )  x.  B ) ) ) )  -> 
( A  -  B
)  ||  ( (
2  x.  ( ( A Yrm  b )  x.  A
) )  -  (
2  x.  ( ( B Yrm  b )  x.  B
) ) ) )
5520, 22, 22, 31, 38, 48, 53, 54syl322anc 1210 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( 2  x.  ( ( B Yrm  b )  x.  B ) ) ) )
56 simp3l 983 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( B Yrm  ( b  -  1 ) ) ) )
57 congsub 27057 . . . . . . . . 9  |-  ( ( ( ( A  -  B )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( ( B Yrm  b )  x.  B ) )  e.  ZZ )  /\  ( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  ( B Yrm  ( b  - 
1 ) )  e.  ZZ )  /\  (
( A  -  B
)  ||  ( (
2  x.  ( ( A Yrm  b )  x.  A
) )  -  (
2  x.  ( ( B Yrm  b )  x.  B
) ) )  /\  ( A  -  B
)  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( B Yrm  ( b  -  1 ) ) ) ) )  ->  ( A  -  B )  ||  (
( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  ( ( 2  x.  ( ( B Yrm  b )  x.  B
) )  -  ( B Yrm  ( b  -  1 ) ) ) ) )
5820, 32, 39, 44, 46, 55, 56, 57syl322anc 1210 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
( B Yrm  b )  x.  B ) )  -  ( B Yrm  ( b  - 
1 ) ) ) ) )
59 rmyluc 27022 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) ) )
6023, 25, 59syl2anc 642 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) ) )
61 rmyluc 27022 . . . . . . . . . 10  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( B Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( B Yrm  b )  x.  B ) )  -  ( B Yrm  ( b  - 
1 ) ) ) )
6233, 25, 61syl2anc 642 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( B Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( B Yrm  b )  x.  B ) )  -  ( B Yrm  ( b  - 
1 ) ) ) )
6360, 62oveq12d 5876 . . . . . . . 8  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) )  =  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A
) )  -  ( A Yrm  ( b  -  1 ) ) )  -  ( ( 2  x.  ( ( B Yrm  b )  x.  B ) )  -  ( B Yrm  ( b  -  1 ) ) ) ) )
6458, 63breqtrrd 4049 . . . . . . 7  |-  ( ( b  e.  NN  /\  ( A  e.  ( ZZ>=
`  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) )  /\  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  ( A  -  B )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) )
65643exp 1150 . . . . . 6  |-  ( b  e.  NN  ->  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A  -  B )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( B Yrm  ( b  -  1 ) ) )  /\  ( A  -  B )  ||  ( ( A Yrm  b )  -  ( B Yrm  b ) ) )  ->  ( A  -  B )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) ) ) )
6665a2d 23 . . . . 5  |-  ( b  e.  NN  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( ( A  -  B )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( B Yrm  ( b  -  1 ) ) )  /\  ( A  -  B )  ||  ( ( A Yrm  b )  -  ( B Yrm  b ) ) ) )  -> 
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) ) ) )
6719, 66syl5 28 . . . 4  |-  ( b  e.  NN  ->  (
( ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) ) )  /\  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )  ->  (
( A  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  B
)  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) ) ) )
68 oveq2 5866 . . . . . . 7  |-  ( a  =  0  ->  ( A Yrm  a )  =  ( A Yrm  0 ) )
69 oveq2 5866 . . . . . . 7  |-  ( a  =  0  ->  ( B Yrm  a )  =  ( B Yrm  0 ) )
7068, 69oveq12d 5876 . . . . . 6  |-  ( a  =  0  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  0 )  -  ( B Yrm  0 ) ) )
7170breq2d 4035 . . . . 5  |-  ( a  =  0  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  0 )  -  ( B Yrm  0 ) ) ) )
7271imbi2d 307 . . . 4  |-  ( a  =  0  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  0 )  -  ( B Yrm  0 ) ) ) ) )
73 oveq2 5866 . . . . . . 7  |-  ( a  =  1  ->  ( A Yrm  a )  =  ( A Yrm  1 ) )
74 oveq2 5866 . . . . . . 7  |-  ( a  =  1  ->  ( B Yrm  a )  =  ( B Yrm  1 ) )
7573, 74oveq12d 5876 . . . . . 6  |-  ( a  =  1  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  1 )  -  ( B Yrm  1 ) ) )
7675breq2d 4035 . . . . 5  |-  ( a  =  1  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  1 )  -  ( B Yrm  1 ) ) ) )
7776imbi2d 307 . . . 4  |-  ( a  =  1  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  1 )  -  ( B Yrm  1 ) ) ) ) )
78 oveq2 5866 . . . . . . 7  |-  ( a  =  ( b  - 
1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  -  1 ) ) )
79 oveq2 5866 . . . . . . 7  |-  ( a  =  ( b  - 
1 )  ->  ( B Yrm  a )  =  ( B Yrm  ( b  -  1 ) ) )
8078, 79oveq12d 5876 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  ( b  -  1 ) )  -  ( B Yrm  ( b  -  1 ) ) ) )
8180breq2d 4035 . . . . 5  |-  ( a  =  ( b  - 
1 )  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) ) ) )
8281imbi2d 307 . . . 4  |-  ( a  =  ( b  - 
1 )  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( B Yrm  ( b  - 
1 ) ) ) ) ) )
83 oveq2 5866 . . . . . . 7  |-  ( a  =  b  ->  ( A Yrm  a )  =  ( A Yrm  b ) )
84 oveq2 5866 . . . . . . 7  |-  ( a  =  b  ->  ( B Yrm  a )  =  ( B Yrm  b ) )
8583, 84oveq12d 5876 . . . . . 6  |-  ( a  =  b  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  b )  -  ( B Yrm  b ) ) )
8685breq2d 4035 . . . . 5  |-  ( a  =  b  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) )
8786imbi2d 307 . . . 4  |-  ( a  =  b  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  b )  -  ( B Yrm  b ) ) ) ) )
88 oveq2 5866 . . . . . . 7  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  +  1 ) ) )
89 oveq2 5866 . . . . . . 7  |-  ( a  =  ( b  +  1 )  ->  ( B Yrm  a )  =  ( B Yrm  ( b  +  1 ) ) )
9088, 89oveq12d 5876 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) )
9190breq2d 4035 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) ) )
9291imbi2d 307 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( B Yrm  ( b  +  1 ) ) ) ) ) )
93 oveq2 5866 . . . . . . 7  |-  ( a  =  N  ->  ( A Yrm  a )  =  ( A Yrm  N ) )
94 oveq2 5866 . . . . . . 7  |-  ( a  =  N  ->  ( B Yrm  a )  =  ( B Yrm  N ) )
9593, 94oveq12d 5876 . . . . . 6  |-  ( a  =  N  ->  (
( A Yrm  a )  -  ( B Yrm  a ) )  =  ( ( A Yrm  N )  -  ( B Yrm  N ) ) )
9695breq2d 4035 . . . . 5  |-  ( a  =  N  ->  (
( A  -  B
)  ||  ( ( A Yrm  a )  -  ( B Yrm  a ) )  <->  ( A  -  B )  ||  (
( A Yrm  N )  -  ( B Yrm  N ) ) ) )
9796imbi2d 307 . . . 4  |-  ( a  =  N  ->  (
( ( A  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  ->  ( A  -  B )  ||  (
( A Yrm  a )  -  ( B Yrm  a ) ) )  <->  ( ( A  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  N )  -  ( B Yrm  N ) ) ) ) )
9811, 18, 67, 72, 77, 82, 87, 92, 972nn0ind 27030 . . 3  |-  ( N  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( A  -  B )  ||  (
( A Yrm  N )  -  ( B Yrm  N ) ) ) )
9998impcom 419 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  N  e.  NN0 )  -> 
( A  -  B
)  ||  ( ( A Yrm 
N )  -  ( B Yrm 
N ) ) )
100993impa 1146 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  -  B )  ||  (
( A Yrm  N )  -  ( B Yrm  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230    || cdivides 12531   Yrm crmy 26986
This theorem is referenced by:  jm2.27a  27098  jm2.27c  27100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-squarenn 26926  df-pell1qr 26927  df-pell14qr 26928  df-pell1234qr 26929  df-pellfund 26930  df-rmx 26987  df-rmy 26988
  Copyright terms: Public domain W3C validator