Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.16nn0 Unicode version

Theorem jm2.16nn0 26496
Description: Lemma 2.16 of [JonesMatijasevic] p. 695. This may be regarded as a special case of jm2.15nn0 26495 if Yrm is redefined as described in rmyluc 26421. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
jm2.16nn0  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )

Proof of Theorem jm2.16nn0
StepHypRef Expression
1 eluzelz 10233 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2 peano2zm 10057 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
31, 2syl 17 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  e.  ZZ )
4 0z 10030 . . . . 5  |-  0  e.  ZZ
5 congid 26457 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  0  e.  ZZ )  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
63, 4, 5sylancl 646 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 0  -  0 ) )
7 rmy0 26413 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
87oveq1d 5834 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  0 )  -  0 )  =  ( 0  -  0 ) )
96, 8breqtrrd 4050 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) )
10 1z 10048 . . . . 5  |-  1  e.  ZZ
11 congid 26457 . . . . 5  |-  ( ( ( A  -  1 )  e.  ZZ  /\  1  e.  ZZ )  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
123, 10, 11sylancl 646 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( 1  -  1 ) )
13 rmy1 26414 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
1413oveq1d 5834 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  1 )  -  1 )  =  ( 1  -  1 ) )
1512, 14breqtrrd 4050 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) )
16 pm3.43 835 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) ) )
171adantl 454 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ZZ )
1817, 2syl 17 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  e.  ZZ )
19 eluzel2 10230 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  2  e.  ZZ )
2019adantl 454 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
2  e.  ZZ )
21 simpr 449 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
22 nnz 10040 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  b  e.  ZZ )
2322adantr 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
24 frmy 26398 . . . . . . . . . . . . . 14  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2524fovcl 5910 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
2621, 23, 25syl2anc 645 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  ZZ )
2726, 17zmulcld 10118 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  b )  x.  A )  e.  ZZ )
2820, 27zmulcld 10118 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ )
29 zmulcl 10061 . . . . . . . . . . . 12  |-  ( ( b  e.  ZZ  /\  1  e.  ZZ )  ->  ( b  x.  1 )  e.  ZZ )
3023, 10, 29sylancl 646 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  x.  1 )  e.  ZZ )
3120, 30zmulcld 10118 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  (
b  x.  1 ) )  e.  ZZ )
3218, 28, 313jca 1137 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ ) )
33323adant3 980 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  (
2  x.  ( ( A Yrm  b )  x.  A
) )  e.  ZZ  /\  ( 2  x.  (
b  x.  1 ) )  e.  ZZ ) )
34 peano2zm 10057 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  (
b  -  1 )  e.  ZZ )
3523, 34syl 17 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  -  1 )  e.  ZZ )
3624fovcl 5910 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  -  1 )  e.  ZZ )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3721, 35, 36syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  - 
1 ) )  e.  ZZ )
3837, 35jca 520 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  (
b  -  1 )  e.  ZZ ) )
39383adant3 980 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  -  1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ ) )
4018, 20, 203jca 1137 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )
)
41403adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ ) )
4227, 30jca 520 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ ) )
43423adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( (
( A Yrm  b )  x.  A )  e.  ZZ  /\  ( b  x.  1 )  e.  ZZ ) )
44 congid 26457 . . . . . . . . . . 11  |-  ( ( ( A  -  1 )  e.  ZZ  /\  2  e.  ZZ )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4518, 20, 44syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( 2  -  2 ) )
46453adant3 980 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( 2  -  2 ) )
4718, 26, 233jca 1137 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
48473adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A  -  1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ ) )
4910a1i 12 . . . . . . . . . . . 12  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  ZZ )
5017, 49jca 520 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  e.  ZZ  /\  1  e.  ZZ ) )
51503adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ZZ  /\  1  e.  ZZ ) )
52 simp3r 989 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) )
53 iddvds 12536 . . . . . . . . . . . 12  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 ) 
||  ( A  - 
1 ) )
5418, 53syl 17 . . . . . . . . . . 11  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A  -  1 )  ||  ( A  -  1 ) )
55543adant3 980 . . . . . . . . . 10  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( A  -  1
) )
56 congmul 26453 . . . . . . . . . 10  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( A Yrm  b )  e.  ZZ  /\  b  e.  ZZ )  /\  ( A  e.  ZZ  /\  1  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( A Yrm  b )  -  b
)  /\  ( A  -  1 )  ||  ( A  -  1
) ) )  -> 
( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  (
b  x.  1 ) ) )
5748, 51, 52, 55, 56syl112anc 1191 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) )
58 congmul 26453 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  ZZ )  /\  ( ( ( A Yrm  b )  x.  A )  e.  ZZ  /\  (
b  x.  1 )  e.  ZZ )  /\  ( ( A  - 
1 )  ||  (
2  -  2 )  /\  ( A  - 
1 )  ||  (
( ( A Yrm  b )  x.  A )  -  ( b  x.  1 ) ) ) )  ->  ( A  - 
1 )  ||  (
( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( 2  x.  (
b  x.  1 ) ) ) )
5941, 43, 46, 57, 58syl112anc 1191 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( 2  x.  ( b  x.  1 ) ) ) )
60 simp3l 988 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) )
61 congsub 26456 . . . . . . . 8  |-  ( ( ( ( A  - 
1 )  e.  ZZ  /\  ( 2  x.  (
( A Yrm  b )  x.  A ) )  e.  ZZ  /\  ( 2  x.  ( b  x.  1 ) )  e.  ZZ )  /\  (
( A Yrm  ( b  - 
1 ) )  e.  ZZ  /\  ( b  -  1 )  e.  ZZ )  /\  (
( A  -  1 )  ||  ( ( 2  x.  ( ( A Yrm  b )  x.  A
) )  -  (
2  x.  ( b  x.  1 ) ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  ( b  - 
1 ) ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
6233, 39, 59, 60, 61syl112anc 1191 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
63 rmyluc 26421 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) ) )
6421, 23, 63syl2anc 645 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  =  ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) ) )
65 nncn 9749 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  b  e.  CC )
6665mulid1d 8847 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  (
b  x.  1 )  =  b )
6766oveq2d 5835 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( 2  x.  b ) )
68652timesd 9949 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  (
2  x.  b )  =  ( b  +  b ) )
6967, 68eqtrd 2316 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2  x.  ( b  x.  1 ) )  =  ( b  +  b ) )
7069oveq1d 5834 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) )  =  ( ( b  +  b )  -  ( b  -  1 ) ) )
71 ax-1cn 8790 . . . . . . . . . . . . 13  |-  1  e.  CC
7271a1i 12 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  1  e.  CC )
7365, 65, 72pnncand 9191 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
( b  +  b )  -  ( b  -  1 ) )  =  ( b  +  1 ) )
7470, 73eqtr2d 2317 . . . . . . . . . 10  |-  ( b  e.  NN  ->  (
b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) )
7574adantr 453 . . . . . . . . 9  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  =  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  - 
1 ) ) )
7664, 75oveq12d 5837 . . . . . . . 8  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) )  =  ( ( ( 2  x.  ( ( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  -  1 ) ) )  -  (
( 2  x.  (
b  x.  1 ) )  -  ( b  -  1 ) ) ) )
77763adant3 980 . . . . . . 7  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) )  =  ( ( ( 2  x.  (
( A Yrm  b )  x.  A ) )  -  ( A Yrm  ( b  - 
1 ) ) )  -  ( ( 2  x.  ( b  x.  1 ) )  -  ( b  -  1 ) ) ) )
7862, 77breqtrrd 4050 . . . . . 6  |-  ( ( b  e.  NN  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) )  /\  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
79783exp 1155 . . . . 5  |-  ( b  e.  NN  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8079a2d 25 . . . 4  |-  ( b  e.  NN  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) )  /\  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
8116, 80syl5 30 . . 3  |-  ( b  e.  NN  ->  (
( ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) )  /\  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  b )  -  b ) ) )  ->  ( A  e.  ( ZZ>= ` 
2 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) ) )
82 oveq2 5827 . . . . . 6  |-  ( a  =  0  ->  ( A Yrm  a )  =  ( A Yrm  0 ) )
83 id 21 . . . . . 6  |-  ( a  =  0  ->  a  =  0 )
8482, 83oveq12d 5837 . . . . 5  |-  ( a  =  0  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  0 )  - 
0 ) )
8584breq2d 4036 . . . 4  |-  ( a  =  0  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  0 )  - 
0 ) ) )
8685imbi2d 309 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  0 )  -  0 ) ) ) )
87 oveq2 5827 . . . . . 6  |-  ( a  =  1  ->  ( A Yrm  a )  =  ( A Yrm  1 ) )
88 id 21 . . . . . 6  |-  ( a  =  1  ->  a  =  1 )
8987, 88oveq12d 5837 . . . . 5  |-  ( a  =  1  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  1 )  - 
1 ) )
9089breq2d 4036 . . . 4  |-  ( a  =  1  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  1 )  - 
1 ) ) )
9190imbi2d 309 . . 3  |-  ( a  =  1  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  1 )  -  1 ) ) ) )
92 oveq2 5827 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  -  1 ) ) )
93 id 21 . . . . . 6  |-  ( a  =  ( b  - 
1 )  ->  a  =  ( b  - 
1 ) )
9492, 93oveq12d 5837 . . . . 5  |-  ( a  =  ( b  - 
1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) )
9594breq2d 4036 . . . 4  |-  ( a  =  ( b  - 
1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  - 
1 ) )  -  ( b  -  1 ) ) ) )
9695imbi2d 309 . . 3  |-  ( a  =  ( b  - 
1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  -  1 ) )  -  (
b  -  1 ) ) ) ) )
97 oveq2 5827 . . . . . 6  |-  ( a  =  b  ->  ( A Yrm  a )  =  ( A Yrm  b ) )
98 id 21 . . . . . 6  |-  ( a  =  b  ->  a  =  b )
9997, 98oveq12d 5837 . . . . 5  |-  ( a  =  b  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  b )  -  b ) )
10099breq2d 4036 . . . 4  |-  ( a  =  b  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  b )  -  b ) ) )
101100imbi2d 309 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  b )  -  b
) ) ) )
102 oveq2 5827 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  a )  =  ( A Yrm  ( b  +  1 ) ) )
103 id 21 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  a  =  ( b  +  1 ) )
104102, 103oveq12d 5837 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) )
105104breq2d 4036 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  ( b  +  1 ) )  -  ( b  +  1 ) ) ) )
106105imbi2d 309 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  ( b  +  1 ) )  -  (
b  +  1 ) ) ) ) )
107 oveq2 5827 . . . . . 6  |-  ( a  =  N  ->  ( A Yrm  a )  =  ( A Yrm  N ) )
108 id 21 . . . . . 6  |-  ( a  =  N  ->  a  =  N )
109107, 108oveq12d 5837 . . . . 5  |-  ( a  =  N  ->  (
( A Yrm  a )  -  a )  =  ( ( A Yrm  N )  -  N ) )
110109breq2d 4036 . . . 4  |-  ( a  =  N  ->  (
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
)  <->  ( A  - 
1 )  ||  (
( A Yrm  N )  -  N ) ) )
111110imbi2d 309 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A  -  1 )  ||  ( ( A Yrm  a )  -  a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N
) ) ) )
1129, 15, 81, 86, 91, 96, 101, 106, 1112nn0ind 26429 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( A  -  1 )  ||  ( ( A Yrm  N )  -  N ) ) )
113112impcom 421 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  -  1 ) 
||  ( ( A Yrm  N )  -  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    - cmin 9032   NNcn 9741   2c2 9790   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225    || cdivides 12525   Yrm crmy 26385
This theorem is referenced by:  jm2.27a  26497  jm2.27c  26499
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-numer 12800  df-denom 12801  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-squarenn 26325  df-pell1qr 26326  df-pell14qr 26327  df-pell1234qr 26328  df-pellfund 26329  df-rmx 26386  df-rmy 26387
  Copyright terms: Public domain W3C validator