Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Unicode version

Theorem jm2.17a 26400
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )

Proof of Theorem jm2.17a
StepHypRef Expression
1 oveq2 5786 . . . . 5  |-  ( a  =  0  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
0 ) )
2 oveq1 5785 . . . . . 6  |-  ( a  =  0  ->  (
a  +  1 )  =  ( 0  +  1 ) )
32oveq2d 5794 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( 0  +  1 ) ) )
41, 3breq12d 3996 . . . 4  |-  ( a  =  0  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) )
54imbi2d 309 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ 0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) ) )
6 oveq2 5786 . . . . 5  |-  ( a  =  b  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
b ) )
7 oveq1 5785 . . . . . 6  |-  ( a  =  b  ->  (
a  +  1 )  =  ( b  +  1 ) )
87oveq2d 5794 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( b  +  1 ) ) )
96, 8breq12d 3996 . . . 4  |-  ( a  =  b  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
109imbi2d 309 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
11 oveq2 5786 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) ) )
12 oveq1 5785 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
a  +  1 )  =  ( ( b  +  1 )  +  1 ) )
1312oveq2d 5794 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1411, 13breq12d 3996 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) )
1514imbi2d 309 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
16 oveq2 5786 . . . . 5  |-  ( a  =  N  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^ N ) )
17 oveq1 5785 . . . . . 6  |-  ( a  =  N  ->  (
a  +  1 )  =  ( N  + 
1 ) )
1817oveq2d 5794 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( N  +  1 ) ) )
1916, 18breq12d 3996 . . . 4  |-  ( a  =  N  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) ) )
2019imbi2d 309 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ N
)  <_  ( A Yrm  ( N  +  1 ) ) ) ) )
21 1le1 9350 . . . . 5  |-  1  <_  1
2221a1i 12 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <_  1 )
23 2cn 9770 . . . . . . 7  |-  2  e.  CC
24 eluzelz 10191 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2524zcnd 10071 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  CC )
26 mulcl 8775 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
2723, 25, 26sylancr 647 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  CC )
28 ax-1cn 8749 . . . . . 6  |-  1  e.  CC
29 subcl 9005 . . . . . 6  |-  ( ( ( 2  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  A )  -  1 )  e.  CC )
3027, 28, 29sylancl 646 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  A )  -  1 )  e.  CC )
3130exp0d 11191 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  =  1 )
32 0p1e1 9793 . . . . . 6  |-  ( 0  +  1 )  =  1
3332oveq2i 5789 . . . . 5  |-  ( A Yrm  ( 0  +  1 ) )  =  ( A Yrm  1 )
34 rmy1 26368 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
3533, 34syl5eq 2300 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  =  1 )
3622, 31, 353brtr4d 4013 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  <_ 
( A Yrm  ( 0  +  1 ) ) )
37 2re 9769 . . . . . . . . . 10  |-  2  e.  RR
38 eluzelre 10192 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
3938adantl 454 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  RR )
40 remulcl 8776 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4137, 39, 40sylancr 647 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  RR )
42 1re 8791 . . . . . . . . 9  |-  1  e.  RR
43 resubcl 9065 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  A )  -  1 )  e.  RR )
4441, 42, 43sylancl 646 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  -  1 )  e.  RR )
45 peano2nn0 9957 . . . . . . . . 9  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
4645adantr 453 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  NN0 )
4744, 46reexpcld 11214 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  e.  RR )
48473adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  e.  RR )
49 simpr 449 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
50 nn0z 9999 . . . . . . . . . . 11  |-  ( b  e.  NN0  ->  b  e.  ZZ )
5150adantr 453 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
5251peano2zd 10073 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  ZZ )
53 frmy 26352 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
5453fovcl 5869 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
5554zred 10070 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5649, 52, 55syl2anc 645 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5756, 44remulcld 8817 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  e.  RR )
58573adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  e.  RR )
5952peano2zd 10073 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  +  1 )  e.  ZZ )
6053fovcl 5869 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  ZZ )
6160zred 10070 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
6249, 59, 61syl2anc 645 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
63623adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
64303ad2ant2 982 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
2  x.  A )  -  1 )  e.  CC )
65 simp1 960 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  b  e.  NN0 )
6664, 65expp1d 11198 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  =  ( ( ( ( 2  x.  A )  -  1 ) ^
b )  x.  (
( 2  x.  A
)  -  1 ) ) )
67 simpl 445 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  NN0 )
6844, 67reexpcld 11214 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ b
)  e.  RR )
69 2nn 9830 . . . . . . . . . . . . 13  |-  2  e.  NN
70 eluz2b2 10243 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
7170simplbi 448 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
7271adantl 454 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  NN )
73 nnmulcl 9723 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
7469, 72, 73sylancr 647 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  NN )
75 nnm1nn0 9958 . . . . . . . . . . . 12  |-  ( ( 2  x.  A )  e.  NN  ->  (
( 2  x.  A
)  -  1 )  e.  NN0 )
76 nn0ge0 9944 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  A
)  -  1 )  e.  NN0  ->  0  <_ 
( ( 2  x.  A )  -  1 ) )
7774, 75, 763syl 20 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( (
2  x.  A )  -  1 ) )
7844, 77jca 520 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) )
7968, 56, 783jca 1137 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) ) )
80793adant3 980 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) ) )
81 simp3 962 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ b )  <_ 
( A Yrm  ( b  +  1 ) ) )
82 lemul1a 9564 . . . . . . . 8  |-  ( ( ( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) )  /\  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ b
)  x.  ( ( 2  x.  A )  -  1 ) )  <_  ( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  -  1 ) ) )
8380, 81, 82syl2anc 645 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
8466, 83eqbrtrd 4003 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
85 nn0cn 9928 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  CC )
8685adantr 453 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  CC )
87 pncan 9011 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  1  e.  CC )  ->  ( ( b  +  1 )  -  1 )  =  b )
8886, 28, 87sylancl 646 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  -  1 )  =  b )
8988oveq2d 5794 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  =  ( A Yrm  b ) )
9053fovcl 5869 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
9190zred 10070 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  RR )
9249, 51, 91syl2anc 645 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  RR )
9389, 92eqeltrd 2330 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  e.  RR )
94 remulcl 8776 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( b  +  1 ) )  e.  RR  /\  1  e.  RR )  ->  (
( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9556, 42, 94sylancl 646 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9641, 56remulcld 8817 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR )
97 nn0re 9927 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  RR )
9897adantr 453 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  RR )
9998lep1d 9642 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  <_  ( b  +  1 ) )
100 lermy 26395 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ  /\  ( b  +  1 )  e.  ZZ )  ->  (
b  <_  ( b  +  1 )  <->  ( A Yrm  b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
10149, 51, 52, 100syl3anc 1187 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  <_  (
b  +  1 )  <-> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) ) )
10299, 101mpbid 203 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) )
10356recnd 8815 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  CC )
104103mulid1d 8806 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  =  ( A Yrm  ( b  +  1 ) ) )
105102, 89, 1043brtr4d 4013 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  1 ) )
10693, 95, 96, 105lesub2dd 9343 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  <_  ( (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
10741recnd 8815 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  CC )
10828a1i 12 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  CC )
109103, 107, 108subdid 9189 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
110103, 107mulcomd 8810 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  =  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
111110oveq1d 5793 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  =  ( ( ( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  (
( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
112109, 111eqtrd 2288 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
113 rmyluc2 26376 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
11449, 52, 113syl2anc 645 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
115106, 112, 1143brtr4d 4013 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1161153adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
11748, 58, 63, 84, 116letrd 8927 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1181173exp 1155 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) )  ->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
119118a2d 25 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
1205, 10, 15, 20, 36, 119nn0ind 10061 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ N )  <_ 
( A Yrm  ( N  + 
1 ) ) ) )
121120impcom 421 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    + caddc 8694    x. cmul 8696    < clt 8821    <_ cle 8822    - cmin 8991   NNcn 9700   2c2 9749   NN0cn0 9918   ZZcz 9977   ZZ>=cuz 10183   ^cexp 11056   Yrm crmy 26339
This theorem is referenced by:  jm3.1lem1  26463
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-omul 6438  df-er 6614  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-acn 7529  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-divides 12480  df-gcd 12634  df-numer 12754  df-denom 12755  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-submnd 14364  df-mulg 14440  df-cntz 14741  df-cmn 15039  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-squarenn 26279  df-pell1qr 26280  df-pell14qr 26281  df-pell1234qr 26282  df-pellfund 26283  df-rmx 26340  df-rmy 26341
  Copyright terms: Public domain W3C validator