Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Unicode version

Theorem jm2.17a 26446
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )
Dummy variables  a 
b are mutually distinct and distinct from all other variables.

Proof of Theorem jm2.17a
StepHypRef Expression
1 oveq2 5827 . . . . 5  |-  ( a  =  0  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
0 ) )
2 oveq1 5826 . . . . . 6  |-  ( a  =  0  ->  (
a  +  1 )  =  ( 0  +  1 ) )
32oveq2d 5835 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( 0  +  1 ) ) )
41, 3breq12d 4037 . . . 4  |-  ( a  =  0  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) )
54imbi2d 309 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ 0 )  <_  ( A Yrm  ( 0  +  1 ) ) ) ) )
6 oveq2 5827 . . . . 5  |-  ( a  =  b  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
b ) )
7 oveq1 5826 . . . . . 6  |-  ( a  =  b  ->  (
a  +  1 )  =  ( b  +  1 ) )
87oveq2d 5835 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( b  +  1 ) ) )
96, 8breq12d 4037 . . . 4  |-  ( a  =  b  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
109imbi2d 309 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) ) ) )
11 oveq2 5827 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) ) )
12 oveq1 5826 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
a  +  1 )  =  ( ( b  +  1 )  +  1 ) )
1312oveq2d 5835 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1411, 13breq12d 4037 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) )
1514imbi2d 309 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
16 oveq2 5827 . . . . 5  |-  ( a  =  N  ->  (
( ( 2  x.  A )  -  1 ) ^ a )  =  ( ( ( 2  x.  A )  -  1 ) ^ N ) )
17 oveq1 5826 . . . . . 6  |-  ( a  =  N  ->  (
a  +  1 )  =  ( N  + 
1 ) )
1817oveq2d 5835 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( N  +  1 ) ) )
1916, 18breq12d 4037 . . . 4  |-  ( a  =  N  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) )  <->  ( ( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) ) )
2019imbi2d 309 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ a
)  <_  ( A Yrm  ( a  +  1 ) ) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ N
)  <_  ( A Yrm  ( N  +  1 ) ) ) ) )
21 1le1 9391 . . . . 5  |-  1  <_  1
2221a1i 12 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  1  <_  1 )
23 2cn 9811 . . . . . . 7  |-  2  e.  CC
24 eluzelz 10233 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
2524zcnd 10113 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  CC )
26 mulcl 8816 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
2723, 25, 26sylancr 646 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  CC )
28 ax-1cn 8790 . . . . . 6  |-  1  e.  CC
29 subcl 9046 . . . . . 6  |-  ( ( ( 2  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  A )  -  1 )  e.  CC )
3027, 28, 29sylancl 645 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  A )  -  1 )  e.  CC )
3130exp0d 11233 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  =  1 )
32 0p1e1 9834 . . . . . 6  |-  ( 0  +  1 )  =  1
3332oveq2i 5830 . . . . 5  |-  ( A Yrm  ( 0  +  1 ) )  =  ( A Yrm  1 )
34 rmy1 26414 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
3533, 34syl5eq 2328 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  =  1 )
3622, 31, 353brtr4d 4054 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ 0 )  <_ 
( A Yrm  ( 0  +  1 ) ) )
37 2re 9810 . . . . . . . . . 10  |-  2  e.  RR
38 eluzelre 10234 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
3938adantl 454 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  RR )
40 remulcl 8817 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
4137, 39, 40sylancr 646 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  RR )
42 1re 8832 . . . . . . . . 9  |-  1  e.  RR
43 resubcl 9106 . . . . . . . . 9  |-  ( ( ( 2  x.  A
)  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  A )  -  1 )  e.  RR )
4441, 42, 43sylancl 645 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  -  1 )  e.  RR )
45 peano2nn0 9999 . . . . . . . . 9  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
4645adantr 453 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  NN0 )
4744, 46reexpcld 11256 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  e.  RR )
48473adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  e.  RR )
49 simpr 449 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
50 nn0z 10041 . . . . . . . . . . 11  |-  ( b  e.  NN0  ->  b  e.  ZZ )
5150adantr 453 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
5251peano2zd 10115 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  ZZ )
53 frmy 26398 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
5453fovcl 5910 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
5554zred 10112 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5649, 52, 55syl2anc 644 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5756, 44remulcld 8858 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  e.  RR )
58573adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  e.  RR )
5952peano2zd 10115 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  +  1 )  e.  ZZ )
6053fovcl 5910 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  ZZ )
6160zred 10112 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
6249, 59, 61syl2anc 644 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
63623adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
64303ad2ant2 979 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
2  x.  A )  -  1 )  e.  CC )
65 simp1 957 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  b  e.  NN0 )
6664, 65expp1d 11240 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  =  ( ( ( ( 2  x.  A )  -  1 ) ^
b )  x.  (
( 2  x.  A
)  -  1 ) ) )
67 simpl 445 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  NN0 )
6844, 67reexpcld 11256 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 ) ^ b
)  e.  RR )
69 2nn 9872 . . . . . . . . . . . . 13  |-  2  e.  NN
70 eluz2b2 10285 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
7170simplbi 448 . . . . . . . . . . . . . 14  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
7271adantl 454 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  NN )
73 nnmulcl 9764 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
7469, 72, 73sylancr 646 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  NN )
75 nnm1nn0 10000 . . . . . . . . . . . 12  |-  ( ( 2  x.  A )  e.  NN  ->  (
( 2  x.  A
)  -  1 )  e.  NN0 )
76 nn0ge0 9986 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  A
)  -  1 )  e.  NN0  ->  0  <_ 
( ( 2  x.  A )  -  1 ) )
7774, 75, 763syl 20 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( (
2  x.  A )  -  1 ) )
7844, 77jca 520 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) )
7968, 56, 783jca 1134 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) ) )
80793adant3 977 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A )  - 
1 )  e.  RR  /\  0  <_  ( (
2  x.  A )  -  1 ) ) ) )
81 simp3 959 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ b )  <_ 
( A Yrm  ( b  +  1 ) ) )
82 lemul1a 9605 . . . . . . . 8  |-  ( ( ( ( ( ( 2  x.  A )  -  1 ) ^
b )  e.  RR  /\  ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( ( 2  x.  A
)  -  1 )  e.  RR  /\  0  <_  ( ( 2  x.  A )  -  1 ) ) )  /\  ( ( ( 2  x.  A )  - 
1 ) ^ b
)  <_  ( A Yrm  ( b  +  1 ) ) )  ->  (
( ( ( 2  x.  A )  - 
1 ) ^ b
)  x.  ( ( 2  x.  A )  -  1 ) )  <_  ( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  -  1 ) ) )
8380, 81, 82syl2anc 644 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
8466, 83eqbrtrd 4044 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) ) )
85 nn0cn 9970 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  CC )
8685adantr 453 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  CC )
87 pncan 9052 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  1  e.  CC )  ->  ( ( b  +  1 )  -  1 )  =  b )
8886, 28, 87sylancl 645 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  -  1 )  =  b )
8988oveq2d 5835 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  =  ( A Yrm  b ) )
9053fovcl 5910 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
9190zred 10112 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  RR )
9249, 51, 91syl2anc 644 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  RR )
9389, 92eqeltrd 2358 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  e.  RR )
94 remulcl 8817 . . . . . . . . . 10  |-  ( ( ( A Yrm  ( b  +  1 ) )  e.  RR  /\  1  e.  RR )  ->  (
( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9556, 42, 94sylancl 645 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  e.  RR )
9641, 56remulcld 8858 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR )
97 nn0re 9969 . . . . . . . . . . . . 13  |-  ( b  e.  NN0  ->  b  e.  RR )
9897adantr 453 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  RR )
9998lep1d 9683 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  <_  ( b  +  1 ) )
100 lermy 26441 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ  /\  ( b  +  1 )  e.  ZZ )  ->  (
b  <_  ( b  +  1 )  <->  ( A Yrm  b )  <_  ( A Yrm  ( b  +  1 ) ) ) )
10149, 51, 52, 100syl3anc 1184 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  <_  (
b  +  1 )  <-> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) ) )
10299, 101mpbid 203 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  <_ 
( A Yrm  ( b  +  1 ) ) )
10356recnd 8856 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  CC )
104103mulid1d 8847 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  1 )  =  ( A Yrm  ( b  +  1 ) ) )
105102, 89, 1043brtr4d 4054 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  <_ 
( ( A Yrm  ( b  +  1 ) )  x.  1 ) )
10693, 95, 96, 105lesub2dd 9384 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  <_  ( (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
10741recnd 8856 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  CC )
10828a1i 12 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
1  e.  CC )
109103, 107, 108subdid 9230 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
110103, 107mulcomd 8851 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  =  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
111110oveq1d 5834 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  ( b  +  1 ) )  x.  ( 2  x.  A ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) )  =  ( ( ( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  (
( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
112109, 111eqtrd 2316 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( ( A Yrm  ( b  +  1 ) )  x.  1 ) ) )
113 rmyluc2 26422 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
11449, 52, 113syl2anc 644 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
115106, 112, 1143brtr4d 4054 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  x.  ( ( 2  x.  A )  - 
1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1161153adant3 977 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( ( A Yrm  ( b  +  1 ) )  x.  (
( 2  x.  A
)  -  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
11748, 58, 63, 84, 116letrd 8968 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( (
( 2  x.  A
)  -  1 ) ^ ( b  +  1 ) )  <_ 
( A Yrm  ( ( b  +  1 )  +  1 ) ) )
1181173exp 1152 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) )  ->  ( ( ( 2  x.  A )  -  1 ) ^
( b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
119118a2d 25 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  (
( ( 2  x.  A )  -  1 ) ^ b )  <_  ( A Yrm  ( b  +  1 ) ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( ( ( 2  x.  A )  - 
1 ) ^ (
b  +  1 ) )  <_  ( A Yrm  ( ( b  +  1 )  +  1 ) ) ) ) )
1205, 10, 15, 20, 36, 119nn0ind 10103 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( (
( 2  x.  A
)  -  1 ) ^ N )  <_ 
( A Yrm  ( N  + 
1 ) ) ) )
121120impcom 421 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  (
( ( 2  x.  A )  -  1 ) ^ N )  <_  ( A Yrm  ( N  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    < clt 8862    <_ cle 8863    - cmin 9032   NNcn 9741   2c2 9790   NN0cn0 9960   ZZcz 10019   ZZ>=cuz 10225   ^cexp 11098   Yrm crmy 26385
This theorem is referenced by:  jm3.1lem1  26509
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-sum 12153  df-ef 12343  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-numer 12800  df-denom 12801  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-squarenn 26325  df-pell1qr 26326  df-pell14qr 26327  df-pell1234qr 26328  df-pellfund 26329  df-rmx 26386  df-rmy 26387
  Copyright terms: Public domain W3C validator