Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Unicode version

Theorem jm2.17b 26380
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A Yrm  ( N  +  1 ) )  <_  (
( 2  x.  A
) ^ N ) )

Proof of Theorem jm2.17b
StepHypRef Expression
1 oveq1 5764 . . . . . 6  |-  ( a  =  0  ->  (
a  +  1 )  =  ( 0  +  1 ) )
21oveq2d 5773 . . . . 5  |-  ( a  =  0  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( 0  +  1 ) ) )
3 oveq2 5765 . . . . 5  |-  ( a  =  0  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
0 ) )
42, 3breq12d 3976 . . . 4  |-  ( a  =  0  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( 0  +  1 ) )  <_  ( ( 2  x.  A ) ^
0 ) ) )
54imbi2d 309 . . 3  |-  ( a  =  0  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( 0  +  1 ) )  <_ 
( ( 2  x.  A ) ^ 0 ) ) ) )
6 oveq1 5764 . . . . . 6  |-  ( a  =  b  ->  (
a  +  1 )  =  ( b  +  1 ) )
76oveq2d 5773 . . . . 5  |-  ( a  =  b  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( b  +  1 ) ) )
8 oveq2 5765 . . . . 5  |-  ( a  =  b  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
b ) )
97, 8breq12d 3976 . . . 4  |-  ( a  =  b  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b ) ) )
109imbi2d 309 . . 3  |-  ( a  =  b  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( b  +  1 ) )  <_ 
( ( 2  x.  A ) ^ b
) ) ) )
11 oveq1 5764 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  (
a  +  1 )  =  ( ( b  +  1 )  +  1 ) )
1211oveq2d 5773 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( ( b  +  1 )  +  1 ) ) )
13 oveq2 5765 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^
( b  +  1 ) ) )
1412, 13breq12d 3976 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) )
1514imbi2d 309 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) ) ) )
16 oveq1 5764 . . . . . 6  |-  ( a  =  N  ->  (
a  +  1 )  =  ( N  + 
1 ) )
1716oveq2d 5773 . . . . 5  |-  ( a  =  N  ->  ( A Yrm  ( a  +  1 ) )  =  ( A Yrm  ( N  +  1 ) ) )
18 oveq2 5765 . . . . 5  |-  ( a  =  N  ->  (
( 2  x.  A
) ^ a )  =  ( ( 2  x.  A ) ^ N ) )
1917, 18breq12d 3976 . . . 4  |-  ( a  =  N  ->  (
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
)  <->  ( A Yrm  ( N  +  1 ) )  <_  ( ( 2  x.  A ) ^ N ) ) )
2019imbi2d 309 . . 3  |-  ( a  =  N  ->  (
( A  e.  (
ZZ>= `  2 )  -> 
( A Yrm  ( a  +  1 ) )  <_ 
( ( 2  x.  A ) ^ a
) )  <->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( N  + 
1 ) )  <_ 
( ( 2  x.  A ) ^ N
) ) ) )
21 1le1 9329 . . . 4  |-  1  <_  1
22 0p1e1 9772 . . . . . . 7  |-  ( 0  +  1 )  =  1
2322oveq2i 5768 . . . . . 6  |-  ( A Yrm  ( 0  +  1 ) )  =  ( A Yrm  1 )
24 rmy1 26347 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  1 )  =  1 )
2523, 24syl5eq 2300 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  =  1 )
26 2re 9748 . . . . . . . 8  |-  2  e.  RR
27 eluzelre 10171 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  RR )
28 remulcl 8755 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  A  e.  RR )  ->  ( 2  x.  A
)  e.  RR )
2926, 27, 28sylancr 647 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  RR )
3029recnd 8794 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  CC )
3130exp0d 11170 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( (
2  x.  A ) ^ 0 )  =  1 )
3225, 31breq12d 3976 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  ( 0  +  1 ) )  <_  (
( 2  x.  A
) ^ 0 )  <->  1  <_  1 ) )
3321, 32mpbiri 226 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( 0  +  1 ) )  <_  ( (
2  x.  A ) ^ 0 ) )
34 simpr 449 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
35 nn0z 9978 . . . . . . . . . . 11  |-  ( b  e.  NN0  ->  b  e.  ZZ )
3635adantr 453 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  ZZ )
3736peano2zd 10052 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  ZZ )
38 rmyluc2 26355 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
3934, 37, 38syl2anc 645 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  =  ( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) ) )
40 rmxypos 26366 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  NN0 )  ->  (
0  <  ( A Xrm  b )  /\  0  <_ 
( A Yrm  b ) ) )
4140simprd 451 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  NN0 )  ->  0  <_  ( A Yrm  b ) )
4241ancoms 441 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( A Yrm  b ) )
43 nn0re 9906 . . . . . . . . . . . . . 14  |-  ( b  e.  NN0  ->  b  e.  RR )
4443adantr 453 . . . . . . . . . . . . 13  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  RR )
4544recnd 8794 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  CC )
46 ax-1cn 8728 . . . . . . . . . . . 12  |-  1  e.  CC
47 pncan 8990 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  1  e.  CC )  ->  ( ( b  +  1 )  -  1 )  =  b )
4845, 46, 47sylancl 646 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  -  1 )  =  b )
4948oveq2d 5773 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  =  ( A Yrm  b ) )
5042, 49breqtrrd 3989 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <_  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )
5127adantl 454 . . . . . . . . . . . 12  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  ->  A  e.  RR )
5226, 51, 28sylancr 647 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  RR )
53 frmy 26331 . . . . . . . . . . . . . 14  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
5453fovcl 5848 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  ZZ )
5554zred 10049 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
b  +  1 )  e.  ZZ )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5634, 37, 55syl2anc 645 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( b  +  1 ) )  e.  RR )
5752, 56remulcld 8796 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR )
5853fovcl 5848 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  ZZ )
5958zred 10049 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  b  e.  ZZ )  ->  ( A Yrm  b )  e.  RR )
6034, 36, 59syl2anc 645 . . . . . . . . . . 11  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  b )  e.  RR )
6149, 60eqeltrd 2330 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  - 
1 ) )  e.  RR )
6257, 61subge02d 9297 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 0  <_  ( A Yrm  ( ( b  +  1 )  -  1 ) )  <->  ( (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) ) )
6350, 62mpbid 203 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  -  ( A Yrm  ( ( b  +  1 )  -  1 ) ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
6439, 63eqbrtrd 3983 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
65643adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) ) )
66 simpl 445 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
b  e.  NN0 )
6752, 66reexpcld 11193 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ b
)  e.  RR )
68 2nn 9809 . . . . . . . . . . . 12  |-  2  e.  NN
69 eluz2b2 10222 . . . . . . . . . . . . 13  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
7069simplbi 448 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
71 nnmulcl 9702 . . . . . . . . . . . 12  |-  ( ( 2  e.  NN  /\  A  e.  NN )  ->  ( 2  x.  A
)  e.  NN )
7268, 70, 71sylancr 647 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( 2  x.  A )  e.  NN )
7372nngt0d 9722 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  0  <  ( 2  x.  A ) )
7473adantl 454 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
0  <  ( 2  x.  A ) )
75 lemul2 9542 . . . . . . . . 9  |-  ( ( ( A Yrm  ( b  +  1 ) )  e.  RR  /\  ( ( 2  x.  A ) ^ b )  e.  RR  /\  ( ( 2  x.  A )  e.  RR  /\  0  <  ( 2  x.  A
) ) )  -> 
( ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b )  <->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) ) )
7656, 67, 52, 74, 75syl112anc 1191 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( A Yrm  ( b  +  1 ) )  <_  ( ( 2  x.  A ) ^
b )  <->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) ) )
7776biimp3a 1286 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
7852recnd 8794 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( 2  x.  A
)  e.  CC )
7978, 66expp1d 11177 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  =  ( ( ( 2  x.  A
) ^ b )  x.  ( 2  x.  A ) ) )
8067recnd 8794 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ b
)  e.  CC )
8180, 78mulcomd 8789 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( 2  x.  A ) ^
b )  x.  (
2  x.  A ) )  =  ( ( 2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
8279, 81eqtrd 2288 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  =  ( ( 2  x.  A )  x.  ( ( 2  x.  A ) ^
b ) ) )
83823adant3 980 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A ) ^ ( b  +  1 ) )  =  ( ( 2  x.  A )  x.  (
( 2  x.  A
) ^ b ) ) )
8477, 83breqtrrd 3989 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )
8537peano2zd 10052 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( b  +  1 )  +  1 )  e.  ZZ )
8653fovcl 5848 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  ZZ )
8786zred 10049 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
( b  +  1 )  +  1 )  e.  ZZ )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
8834, 85, 87syl2anc 645 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR )
89 peano2nn0 9936 . . . . . . . . . 10  |-  ( b  e.  NN0  ->  ( b  +  1 )  e. 
NN0 )
9089adantr 453 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( b  +  1 )  e.  NN0 )
9152, 90reexpcld 11193 . . . . . . . 8  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 2  x.  A ) ^ (
b  +  1 ) )  e.  RR )
92 letr 8847 . . . . . . . 8  |-  ( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  e.  RR  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  e.  RR  /\  ( ( 2  x.  A ) ^ (
b  +  1 ) )  e.  RR )  ->  ( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  /\  (
( 2  x.  A
)  x.  ( A Yrm  ( b  +  1 ) ) )  <_  (
( 2  x.  A
) ^ ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) ) )
9388, 57, 91, 92syl3anc 1187 . . . . . . 7  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 ) )  -> 
( ( ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) )
94933adant3 980 . . . . . 6  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( (
( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  /\  ( ( 2  x.  A )  x.  ( A Yrm  ( b  +  1 ) ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  (
( 2  x.  A
) ^ ( b  +  1 ) ) ) )
9565, 84, 94mp2and 663 . . . . 5  |-  ( ( b  e.  NN0  /\  A  e.  ( ZZ>= ` 
2 )  /\  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( (
2  x.  A ) ^ ( b  +  1 ) ) )
96953exp 1155 . . . 4  |-  ( b  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_  ( ( 2  x.  A ) ^
( b  +  1 ) ) ) ) )
9796a2d 25 . . 3  |-  ( b  e.  NN0  ->  ( ( A  e.  ( ZZ>= ` 
2 )  ->  ( A Yrm  ( b  +  1 ) )  <_  (
( 2  x.  A
) ^ b ) )  ->  ( A  e.  ( ZZ>= `  2 )  ->  ( A Yrm  ( ( b  +  1 )  +  1 ) )  <_ 
( ( 2  x.  A ) ^ (
b  +  1 ) ) ) ) )
985, 10, 15, 20, 33, 97nn0ind 10040 . 2  |-  ( N  e.  NN0  ->  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  ( N  +  1 ) )  <_  ( (
2  x.  A ) ^ N ) ) )
9998impcom 421 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A Yrm  ( N  +  1 ) )  <_  (
( 2  x.  A
) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671    + caddc 8673    x. cmul 8675    < clt 8800    <_ cle 8801    - cmin 8970   NNcn 9679   2c2 9728   NN0cn0 9897   ZZcz 9956   ZZ>=cuz 10162   ^cexp 11035   Xrm crmx 26317   Yrm crmy 26318
This theorem is referenced by:  jm2.17c  26381
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6593  df-map 6707  df-pm 6708  df-ixp 6751  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-fi 7098  df-sup 7127  df-oi 7158  df-card 7505  df-acn 7508  df-cda 7727  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-q 10249  df-rp 10287  df-xneg 10384  df-xadd 10385  df-xmul 10386  df-ioo 10591  df-ioc 10592  df-ico 10593  df-icc 10594  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-fac 11220  df-bc 11247  df-hash 11269  df-shft 11492  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-limsup 11875  df-clim 11892  df-rlim 11893  df-sum 12089  df-ef 12276  df-sin 12278  df-cos 12279  df-pi 12281  df-divides 12459  df-gcd 12613  df-numer 12733  df-denom 12734  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-hom 13159  df-cco 13160  df-rest 13254  df-topn 13255  df-topgen 13271  df-pt 13272  df-prds 13275  df-xrs 13330  df-0g 13331  df-gsum 13332  df-qtop 13337  df-imas 13338  df-xps 13340  df-mre 13415  df-mrc 13416  df-acs 13418  df-mnd 14294  df-submnd 14343  df-mulg 14419  df-cntz 14720  df-cmn 15018  df-xmet 16300  df-met 16301  df-bl 16302  df-mopn 16303  df-cnfld 16305  df-top 16563  df-bases 16565  df-topon 16566  df-topsp 16567  df-cld 16683  df-ntr 16684  df-cls 16685  df-nei 16762  df-lp 16795  df-perf 16796  df-cn 16884  df-cnp 16885  df-haus 16970  df-tx 17184  df-hmeo 17373  df-fbas 17447  df-fg 17448  df-fil 17468  df-fm 17560  df-flim 17561  df-flf 17562  df-xms 17812  df-ms 17813  df-tms 17814  df-cncf 18309  df-limc 19143  df-dv 19144  df-log 19841  df-squarenn 26258  df-pell1qr 26259  df-pell14qr 26260  df-pell1234qr 26261  df-pellfund 26262  df-rmx 26319  df-rmy 26320
  Copyright terms: Public domain W3C validator