Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Unicode version

Theorem jm2.19 27097
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 27051 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
213adant2 974 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
3 0dvds 12551 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
433ad2ant3 978 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  N  = 
0 ) )
5 frmy 27010 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
65fovcl 5951 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
763adant2 974 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
8 0dvds 12551 . . . . . 6  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( 0  ||  ( A Yrm 
N )  <->  ( A Yrm  N
)  =  0 ) )
97, 8syl 15 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  ( A Yrm  N
)  <->  ( A Yrm  N )  =  0 ) )
102, 4, 93bitr4d 276 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  0  ||  ( A Yrm  N ) ) )
1110adantr 451 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( 0  ||  N  <->  0 
||  ( A Yrm  N ) ) )
12 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  =  0 )
1312breq1d 4035 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  0 
||  N ) )
1412oveq2d 5876 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  ( A Yrm  0 ) )
15 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  A  e.  ( ZZ>= ` 
2 ) )
16 rmy0 27025 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1715, 16syl 15 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  0 )  =  0 )
1814, 17eqtrd 2317 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  0 )
1918breq1d 4035 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( ( A Yrm  M ) 
||  ( A Yrm  N )  <->  0  ||  ( A Yrm  N ) ) )
2011, 13, 193bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  ( A Yrm  M )  ||  ( A Yrm 
N ) ) )
215fovcl 5951 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
22213adant3 975 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
23 dvds0 12546 . . . . . . . 8  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( A Yrm  M )  ||  0 )
2422, 23syl 15 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  0
)
25163ad2ant1 976 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  0 )  =  0 )
2624, 25breqtrrd 4051 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  ( A Yrm  0 ) )
27 oveq2 5868 . . . . . . 7  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  0 ) )
2827breq2d 4037 . . . . . 6  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M ) 
||  ( A Yrm  0 ) ) )
2926, 28syl5ibrcom 213 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
3029adantr 451 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
31 zre 10030 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
32313ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3332ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  RR )
34 zcn 10031 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
35343ad2ant2 977 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3635ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  CC )
37 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  =/=  0 )
3836, 37absrpcld 11932 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  RR+ )
39 modlt 10983 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
4033, 38, 39syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
41 simpll1 994 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  A  e.  ( ZZ>= `  2 )
)
42 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  ZZ )
43 simpll2 995 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  ZZ )
44 nnabscl 11811 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4543, 37, 44syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN )
4642, 45zmodcld 10992 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  NN0 )
47 nn0abscl 11799 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
48473ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
4948ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN0 )
50 ltrmynn0 27046 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  NN0  /\  ( abs `  M
)  e.  NN0 )  ->  ( ( N  mod  ( abs `  M ) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5141, 46, 49, 50syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5240, 51mpbid 201 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) )
5346nn0zd 10117 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  ZZ )
54 rmyabs 27056 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5541, 53, 54syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5633, 38modcld 10979 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  RR )
57 modge0 10982 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5833, 38, 57syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5956, 58absidd 11907 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( N  mod  ( abs `  M ) ) )  =  ( N  mod  ( abs `  M
) ) )
6059oveq2d 5876 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )
6155, 60eqtrd 2317 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
62 rmyabs 27056 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6341, 43, 62syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6452, 61, 633brtr4d 4055 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  < 
( abs `  ( A Yrm 
M ) ) )
655fovcl 5951 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( A Yrm  ( N  mod  ( abs `  M
) ) )  e.  ZZ )
6641, 53, 65syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ )
67 nn0abscl 11799 . . . . . . . . . . 11  |-  ( ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  NN0 )
6866, 67syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e. 
NN0 )
6968nn0red 10021 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  RR )
7022ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  M
)  e.  ZZ )
71 nn0abscl 11799 . . . . . . . . . . 11  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( abs `  ( A Yrm 
M ) )  e. 
NN0 )
7270, 71syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  NN0 )
7372nn0red 10021 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
7469, 73ltnled 8968 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( abs `  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )  <  ( abs `  ( A Yrm 
M ) )  <->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
7564, 74mpbid 201 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
76 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  =/=  0
)
77 rmyeq0 27051 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7841, 53, 77syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7978necon3bid 2483 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =/=  0  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 ) )
8076, 79mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )
81 dvdsleabs2 27088 . . . . . . . 8  |-  ( ( ( A Yrm  M )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )  ->  ( ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm 
M ) )  <_ 
( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8270, 66, 80, 81syl3anc 1182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8375, 82mtod 168 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
8483ex 423 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =/=  0  ->  -.  ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
8584necon4ad 2509 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( N  mod  ( abs `  M
) )  =  0 ) )
8630, 85impbid 183 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
87 simpl2 959 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  ZZ )
88 simpl3 960 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  ZZ )
89 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  =/=  0 )
90 dvdsabsmod0 27090 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
9187, 88, 89, 90syl3anc 1182 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
92 simpl1 958 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  A  e.  ( ZZ>= `  2 )
)
9332adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  RR )
94 zre 10030 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
95943ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
9695adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  RR )
97 modabsdifz 27089 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9893, 96, 89, 97syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9998znegcld 10121 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
100 jm2.19lem4 27096 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )  ->  ( ( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M ) 
||  ( A Yrm  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) ) ) )
10192, 87, 88, 99, 100syl121anc 1187 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
10232recnd 8863 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
103102adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  CC )
10435adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  CC )
105104, 89absrpcld 11932 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( abs `  M )  e.  RR+ )
10693, 105modcld 10979 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  RR )
107106recnd 8863 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  CC )
108103, 107subcld 9159 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  mod  ( abs `  M
) ) )  e.  CC )
109108, 104, 89divcld 9538 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  CC )
110109, 104mulneg1d 9234 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  -u ( ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M
)  x.  M ) )
111110oveq2d 5876 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  +  -u (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
112109, 104mulcld 8857 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  e.  CC )
113103, 112negsubd 9165 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  -u ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) )
114108, 104, 89divcan1d 9539 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  ( N  -  ( N  mod  ( abs `  M
) ) ) )
115114oveq2d 5876 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) ) )
116103, 107nncand 9164 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) )  =  ( N  mod  ( abs `  M ) ) )
117115, 116eqtrd 2317 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  mod  ( abs `  M ) ) )
118111, 113, 1173eqtrrd 2322 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  =  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
119118oveq2d 5876 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) )
120119breq2d 4037 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
121101, 120bitr4d 247 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
12286, 91, 1213bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
12320, 122pm2.61dane 2526 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739    + caddc 8742    x. cmul 8744    < clt 8869    <_ cle 8870    - cmin 9039   -ucneg 9040    / cdiv 9425   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ZZ>=cuz 10232   RR+crp 10356    mod cmo 10975   abscabs 11721    || cdivides 12533   Yrm crmy 26997
This theorem is referenced by:  jm2.20nn  27101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-omul 6486  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-acn 7577  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-numer 12808  df-denom 12809  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-squarenn 26937  df-pell1qr 26938  df-pell14qr 26939  df-pell1234qr 26940  df-pellfund 26941  df-rmx 26998  df-rmy 26999
  Copyright terms: Public domain W3C validator