Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Unicode version

Theorem jm2.19 26497
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 26451 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
213adant2 974 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  =  0  <->  ( A Yrm  N
)  =  0 ) )
3 0dvds 12545 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
433ad2ant3 978 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  N  = 
0 ) )
5 frmy 26410 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
65fovcl 5911 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
763adant2 974 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
8 0dvds 12545 . . . . . 6  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( 0  ||  ( A Yrm 
N )  <->  ( A Yrm  N
)  =  0 ) )
97, 8syl 15 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  ( A Yrm  N
)  <->  ( A Yrm  N )  =  0 ) )
102, 4, 93bitr4d 276 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  ||  N  <->  0  ||  ( A Yrm  N ) ) )
1110adantr 451 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( 0  ||  N  <->  0 
||  ( A Yrm  N ) ) )
12 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  M  =  0 )
1312breq1d 4034 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  0 
||  N ) )
1412oveq2d 5836 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  ( A Yrm  0 ) )
15 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  A  e.  ( ZZ>= ` 
2 ) )
16 rmy0 26425 . . . . . 6  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1715, 16syl 15 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  0 )  =  0 )
1814, 17eqtrd 2316 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( A Yrm  M )  =  0 )
1918breq1d 4034 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( ( A Yrm  M ) 
||  ( A Yrm  N )  <->  0  ||  ( A Yrm  N ) ) )
2011, 13, 193bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  -> 
( M  ||  N  <->  ( A Yrm  M )  ||  ( A Yrm 
N ) ) )
215fovcl 5911 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
22213adant3 975 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
23 dvds0 12540 . . . . . . . 8  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( A Yrm  M )  ||  0 )
2422, 23syl 15 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  0
)
25163ad2ant1 976 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm  0 )  =  0 )
2624, 25breqtrrd 4050 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A Yrm 
M )  ||  ( A Yrm  0 ) )
27 oveq2 5828 . . . . . . 7  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  0 ) )
2827breq2d 4036 . . . . . 6  |-  ( ( N  mod  ( abs `  M ) )  =  0  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M ) 
||  ( A Yrm  0 ) ) )
2926, 28syl5ibrcom 213 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
3029adantr 451 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  ->  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
31 zre 10024 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
32313ad2ant3 978 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
3332ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  RR )
34 zcn 10025 . . . . . . . . . . . . . 14  |-  ( M  e.  ZZ  ->  M  e.  CC )
35343ad2ant2 977 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3635ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  CC )
37 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  =/=  0 )
3836, 37absrpcld 11926 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  RR+ )
39 modlt 10977 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
4033, 38, 39syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  <  ( abs `  M ) )
41 simpll1 994 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  A  e.  ( ZZ>= `  2 )
)
42 simpll3 996 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  N  e.  ZZ )
43 simpll2 995 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  M  e.  ZZ )
44 nnabscl 11805 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  M  =/=  0 )  -> 
( abs `  M
)  e.  NN )
4543, 37, 44syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN )
4642, 45zmodcld 10986 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  NN0 )
47 nn0abscl 11793 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  ( abs `  M )  e. 
NN0 )
48473ad2ant2 977 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  M )  e. 
NN0 )
4948ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  M )  e.  NN0 )
50 ltrmynn0 26446 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  NN0  /\  ( abs `  M
)  e.  NN0 )  ->  ( ( N  mod  ( abs `  M ) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5141, 46, 49, 50syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  <  ( abs `  M )  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) ) )
5240, 51mpbid 201 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <  ( A Yrm  ( abs `  M ) ) )
5346nn0zd 10111 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  ZZ )
54 rmyabs 26456 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5541, 53, 54syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) ) )
5633, 38modcld 10973 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  e.  RR )
57 modge0 10976 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  ( abs `  M )  e.  RR+ )  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5833, 38, 57syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  0  <_  ( N  mod  ( abs `  M ) ) )
5956, 58absidd 11901 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( N  mod  ( abs `  M ) ) )  =  ( N  mod  ( abs `  M
) ) )
6059oveq2d 5836 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( abs `  ( N  mod  ( abs `  M
) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )
6155, 60eqtrd 2316 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  =  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
62 rmyabs 26456 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6341, 43, 62syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  =  ( A Yrm  ( abs `  M ) ) )
6452, 61, 633brtr4d 4054 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  < 
( abs `  ( A Yrm 
M ) ) )
655fovcl 5911 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( A Yrm  ( N  mod  ( abs `  M
) ) )  e.  ZZ )
6641, 53, 65syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ )
67 nn0abscl 11793 . . . . . . . . . . 11  |-  ( ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  NN0 )
6866, 67syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e. 
NN0 )
6968nn0red 10015 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )  e.  RR )
7022ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  M
)  e.  ZZ )
71 nn0abscl 11793 . . . . . . . . . . 11  |-  ( ( A Yrm  M )  e.  ZZ  ->  ( abs `  ( A Yrm 
M ) )  e. 
NN0 )
7270, 71syl 15 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  NN0 )
7372nn0red 10015 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( abs `  ( A Yrm  M ) )  e.  RR )
7469, 73ltnled 8962 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( abs `  ( A Yrm  ( N  mod  ( abs `  M
) ) ) )  <  ( abs `  ( A Yrm 
M ) )  <->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
7564, 74mpbid 201 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
76 simpr 447 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( N  mod  ( abs `  M
) )  =/=  0
)
77 rmyeq0 26451 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  mod  ( abs `  M
) )  e.  ZZ )  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7841, 53, 77syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =  0  <-> 
( A Yrm  ( N  mod  ( abs `  M ) ) )  =  0 ) )
7978necon3bid 2482 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( N  mod  ( abs `  M
) )  =/=  0  <->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 ) )
8076, 79mpbid 201 . . . . . . . 8  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )
81 dvdsleabs2 26488 . . . . . . . 8  |-  ( ( ( A Yrm  M )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  e.  ZZ  /\  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =/=  0 )  ->  ( ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm 
M ) )  <_ 
( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8270, 66, 80, 81syl3anc 1182 . . . . . . 7  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  ( ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( abs `  ( A Yrm  M ) )  <_  ( abs `  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) ) )
8375, 82mtod 168 . . . . . 6  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0
)  /\  ( N  mod  ( abs `  M
) )  =/=  0
)  ->  -.  ( A Yrm 
M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) )
8483ex 423 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =/=  0  ->  -.  ( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
8584necon4ad 2508 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  ->  ( N  mod  ( abs `  M
) )  =  0 ) )
8630, 85impbid 183 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  mod  ( abs `  M ) )  =  0  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
87 simpl2 959 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  ZZ )
88 simpl3 960 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  ZZ )
89 simpr 447 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  =/=  0 )
90 dvdsabsmod0 26490 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
9187, 88, 89, 90syl3anc 1182 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( N  mod  ( abs `  M
) )  =  0 ) )
92 simpl1 958 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  A  e.  ( ZZ>= `  2 )
)
9332adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  RR )
94 zre 10024 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  RR )
95943ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
9695adantr 451 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  RR )
97 modabsdifz 26489 . . . . . . 7  |-  ( ( N  e.  RR  /\  M  e.  RR  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9893, 96, 89, 97syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
9998znegcld 10115 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )
100 jm2.19lem4 26496 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  ZZ )  ->  ( ( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M ) 
||  ( A Yrm  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) ) ) )
10192, 87, 88, 99, 100syl121anc 1187 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
10232recnd 8857 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
103102adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  N  e.  CC )
10435adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  M  e.  CC )
105104, 89absrpcld 11926 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( abs `  M )  e.  RR+ )
10693, 105modcld 10973 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  RR )
107106recnd 8857 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  e.  CC )
108103, 107subcld 9153 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  mod  ( abs `  M
) ) )  e.  CC )
109108, 104, 89divcld 9532 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  e.  CC )
110109, 104mulneg1d 9228 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  -u ( ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M
)  x.  M ) )
111110oveq2d 5836 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  ( -u (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  +  -u (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
112109, 104mulcld 8851 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  e.  CC )
113103, 112negsubd 9159 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  +  -u ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( ( ( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) ) )
114108, 104, 89divcan1d 9533 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M )  =  ( N  -  ( N  mod  ( abs `  M
) ) ) )
115114oveq2d 5836 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) ) )
116103, 107nncand 9158 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( N  -  ( N  mod  ( abs `  M ) ) ) )  =  ( N  mod  ( abs `  M ) ) )
117115, 116eqtrd 2316 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  -  ( (
( N  -  ( N  mod  ( abs `  M
) ) )  /  M )  x.  M
) )  =  ( N  mod  ( abs `  M ) ) )
118111, 113, 1173eqtrrd 2321 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( N  mod  ( abs `  M
) )  =  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) )
119118oveq2d 5836 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( A Yrm  ( N  mod  ( abs `  M ) ) )  =  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) )
120119breq2d 4036 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  +  ( -u ( ( N  -  ( N  mod  ( abs `  M ) ) )  /  M )  x.  M ) ) ) ) )
121101, 120bitr4d 247 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  (
( A Yrm  M )  ||  ( A Yrm  N )  <->  ( A Yrm  M
)  ||  ( A Yrm  ( N  mod  ( abs `  M ) ) ) ) )
12286, 91, 1213bitr4d 276 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =/=  0 )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
12320, 122pm2.61dane 2525 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( A Yrm  M
)  ||  ( A Yrm  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733    + caddc 8736    x. cmul 8738    < clt 8863    <_ cle 8864    - cmin 9033   -ucneg 9034    / cdiv 9419   NNcn 9742   2c2 9791   NN0cn0 9961   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350    mod cmo 10969   abscabs 11715    || cdivides 12527   Yrm crmy 26397
This theorem is referenced by:  jm2.20nn  26501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-numer 12802  df-denom 12803  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-squarenn 26337  df-pell1qr 26338  df-pell14qr 26339  df-pell1234qr 26340  df-pellfund 26341  df-rmx 26398  df-rmy 26399
  Copyright terms: Public domain W3C validator