Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.20nn Unicode version

Theorem jm2.20nn 26457
Description: Lemma 2.20 of [JonesMatijasevic] p. 696, the "first step down lemma". (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
jm2.20nn  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )

Proof of Theorem jm2.20nn
StepHypRef Expression
1 simp1 960 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  A  e.  ( ZZ>= `  2 )
)
2 nnz 10012 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  ZZ )
323ad2ant3 983 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  ZZ )
4 frmy 26366 . . . . . . . . . . 11  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
54fovcl 5883 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
61, 3, 5syl2anc 645 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
76zcnd 10085 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
87adantr 453 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  CC )
98sqvald 11208 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
10 zsqcl 11140 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  ZZ  ->  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )
116, 10syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  e.  ZZ )
1211adantr 453 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  e.  ZZ )
13 frmx 26365 . . . . . . . . . . . 12  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1413fovcl 5883 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
151, 3, 14syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
1615nn0zd 10082 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Xrm 
N )  e.  ZZ )
1716adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Xrm  N )  e.  ZZ )
187sqvald 11208 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
1918adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  =  ( ( A Yrm  N )  x.  ( A Yrm  N ) ) )
20 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
2119, 20eqbrtrrd 4019 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M ) )
22 nnz 10012 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN  ->  M  e.  ZZ )
23223ad2ant2 982 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  ZZ )
244fovcl 5883 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  ZZ )  ->  ( A Yrm 
M )  e.  ZZ )
251, 23, 24syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  ZZ )
26 muldvds1 12515 . . . . . . . . . . . . . 14  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
276, 6, 25, 26syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm  M )  ->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
2827adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( A Yrm 
M )  ->  ( A Yrm 
N )  ||  ( A Yrm 
M ) ) )
2921, 28mpd 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( A Yrm  M ) )
30 simpl1 963 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  A  e.  ( ZZ>= ` 
2 ) )
313adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  ZZ )
3223adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  ZZ )
33 jm2.19 26453 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  ||  M  <->  ( A Yrm  N
)  ||  ( A Yrm  M
) ) )
3430, 31, 32, 33syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( A Yrm  N )  ||  ( A Yrm 
M ) ) )
3529, 34mpbird 225 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  ||  M )
36 simpl2 964 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  M  e.  NN )
37 simpl3 965 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  e.  NN )
38 nndivdivides 12499 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
3936, 37, 38syl2anc 645 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  ||  M  <->  ( M  /  N )  e.  NN ) )
4035, 39mpbid 203 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  NN )
41 nnm1nn0 9972 . . . . . . . . 9  |-  ( ( M  /  N )  e.  NN  ->  (
( M  /  N
)  -  1 )  e.  NN0 )
4240, 41syl 17 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  -  1 )  e.  NN0 )
43 zexpcl 11084 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( M  /  N )  -  1 )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ )
4417, 42, 43syl2anc 645 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  ZZ )
4540nnzd 10083 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  ZZ )
466adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  e.  ZZ )
4745, 46zmulcld 10090 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )
4825adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  ZZ )
49 nncn 9722 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  ->  M  e.  CC )
50493ad2ant2 982 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  M  e.  CC )
51 nncn 9722 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  e.  CC )
52513ad2ant3 983 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  e.  CC )
53 nnne0 9746 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
54533ad2ant3 983 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  N  =/=  0 )
5550, 52, 54divcan2d 9506 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
5655oveq2d 5808 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  =  ( A Yrm  M ) )
5756, 25eqeltrd 2332 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( M  /  N ) ) )  e.  ZZ )
5857adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  e.  ZZ )
5944, 46zmulcld 10090 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
6045, 59zmulcld 10090 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  ZZ )
6158, 60zsubcld 10089 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
62 3nn0 9950 . . . . . . . . . . . . 13  |-  3  e.  NN0
6362a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  NN0 )
64 zexpcl 11084 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
656, 63, 64syl2anc 645 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
6665adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  e.  ZZ )
67 2nn0 9949 . . . . . . . . . . . . 13  |-  2  e.  NN0
6867a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  2  e.  NN0 )
6962nn0zi 10015 . . . . . . . . . . . . . 14  |-  3  e.  ZZ
70 2re 9783 . . . . . . . . . . . . . . 15  |-  2  e.  RR
71 3re 9785 . . . . . . . . . . . . . . 15  |-  3  e.  RR
72 2lt3 9854 . . . . . . . . . . . . . . 15  |-  2  <  3
7370, 71, 72ltleii 8909 . . . . . . . . . . . . . 14  |-  2  <_  3
74 2z 10021 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
7574eluz1i 10204 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 3  e.  ZZ  /\  2  <_ 
3 ) )
7669, 73, 75mpbir2an 891 . . . . . . . . . . . . 13  |-  3  e.  ( ZZ>= `  2 )
7776a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  3  e.  ( ZZ>= `  2 )
)
78 dvdsexp 12546 . . . . . . . . . . . 12  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  2  e. 
NN0  /\  3  e.  ( ZZ>= `  2 )
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
796, 68, 77, 78syl3anc 1187 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 ) )
8079adantr 453 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 ) )
81 jm2.23 26456 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( M  /  N )  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
8230, 31, 40, 81syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
83 dvdstr 12524 . . . . . . . . . . 11  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8483imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
8512, 66, 61, 80, 82, 84syl32anc 1195 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
86 dvds2sub 12523 . . . . . . . . . 10  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) ) )
8786imp 420 . . . . . . . . 9  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  M )  -  (
( A Yrm  ( N  x.  ( M  /  N
) ) )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8812, 48, 61, 20, 85, 87syl32anc 1195 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
8955adantr 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( M  /  N ) )  =  M )
9089oveq2d 5808 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  ( N  x.  ( M  /  N
) ) )  =  ( A Yrm  M ) )
9190oveq1d 5807 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
9291oveq2d 5808 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( A Yrm  M )  -  (
( A Yrm  M )  -  ( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
9325zcnd 10085 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
M )  e.  CC )
9493adantr 453 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  M )  e.  CC )
9560zcnd 10085 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  e.  CC )
9694, 95nncand 9130 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) )
9745zcnd 10085 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( M  /  N
)  e.  CC )
9844zcnd 10085 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  e.  CC )
9997, 98, 8mul12d 8989 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( M  /  N )  x.  (
( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) )  x.  ( A Yrm  N ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10096, 99eqtrd 2290 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  M )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10192, 100eqtrd 2290 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  M )  -  ( ( A Yrm  ( N  x.  ( M  /  N ) ) )  -  ( ( M  /  N )  x.  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  =  ( ( ( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  x.  (
( M  /  N
)  x.  ( A Yrm  N ) ) ) )
10288, 101breqtrd 4021 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) ) )
103 gcdcom 12661 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ )  ->  ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
1046, 16, 103syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  ( ( A Xrm  N )  gcd  ( A Yrm  N ) ) )
105 jm2.19lem1 26449 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
1061, 3, 105syl2anc 645 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N )  gcd  ( A Yrm  N ) )  =  1 )
107104, 106eqtrd 2290 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
108107adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1 )
10967a1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
2  e.  NN0 )
110 rpexp12i 12763 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( A Xrm  N )  e.  ZZ  /\  ( 2  e.  NN0  /\  ( ( M  /  N )  -  1 )  e.  NN0 )
)  ->  ( (
( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 ) )
11146, 17, 109, 42, 110syl112anc 1191 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  gcd  ( A Xrm  N ) )  =  1  ->  ( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) ) )  =  1 ) )
112108, 111mpd 16 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) ) )  =  1 )
113 coprmdvds 12743 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  ->  (
( ( ( A Yrm  N ) ^ 2 ) 
||  ( ( ( A Xrm  N ) ^ (
( M  /  N
)  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  (
( ( A Yrm  N ) ^ 2 )  gcd  ( ( A Xrm  N ) ^ ( ( M  /  N )  - 
1 ) ) )  =  1 )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) ) )
114113imp 420 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) )  e.  ZZ  /\  ( ( M  /  N )  x.  ( A Yrm 
N ) )  e.  ZZ )  /\  (
( ( A Yrm  N ) ^ 2 )  ||  ( ( ( A Xrm  N ) ^ ( ( M  /  N )  -  1 ) )  x.  ( ( M  /  N )  x.  ( A Yrm  N ) ) )  /\  ( ( ( A Yrm  N ) ^
2 )  gcd  (
( A Xrm  N ) ^
( ( M  /  N )  -  1 ) ) )  =  1 ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
11512, 44, 47, 102, 112, 114syl32anc 1195 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( ( M  /  N )  x.  ( A Yrm 
N ) ) )
1169, 115eqbrtrrd 4019 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  ( ( M  /  N )  x.  ( A Yrm  N ) ) )
117 rmy0 26381 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A Yrm  0 )  =  0 )
1181173ad2ant1 981 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  =  0 )
119 nngt0 9743 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  <  N )
1201193ad2ant3 983 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  N )
121 0z 10002 . . . . . . . . . . . . 13  |-  0  e.  ZZ
122121a1i 12 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  e.  ZZ )
123 ltrmy 26406 . . . . . . . . . . . 12  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  0  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
1241, 122, 3, 123syl3anc 1187 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
0  <  N  <->  ( A Yrm  0 )  <  ( A Yrm  N ) ) )
125120, 124mpbid 203 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  0 )  <  ( A Yrm 
N ) )
126118, 125eqbrtrrd 4019 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  0  <  ( A Yrm  N ) )
127 elnnz 10001 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  <->  ( ( A Yrm  N )  e.  ZZ  /\  0  < 
( A Yrm  N ) ) )
1286, 126, 127sylanbrc 648 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  e.  NN )
129 nnne0 9746 . . . . . . . 8  |-  ( ( A Yrm  N )  e.  NN  ->  ( A Yrm  N )  =/=  0 )
130128, 129syl 17 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm 
N )  =/=  0
)
131130adantr 453 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  =/=  0 )
132 dvdsmulcr 12520 . . . . . 6  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( ( A Yrm  N )  e.  ZZ  /\  ( A Yrm  N )  =/=  0 ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13346, 45, 46, 131, 132syl112anc 1191 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( ( A Yrm  N )  x.  ( A Yrm  N ) )  ||  (
( M  /  N
)  x.  ( A Yrm  N ) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
134116, 133mpbid 203 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( A Yrm  N )  ||  ( M  /  N
) )
13554adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  ->  N  =/=  0 )
136 dvdscmulr 12519 . . . . 5  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( M  /  N )  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
13746, 45, 31, 135, 136syl112anc 1191 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( ( N  x.  ( A Yrm  N ) ) 
||  ( N  x.  ( M  /  N
) )  <->  ( A Yrm  N
)  ||  ( M  /  N ) ) )
138134, 137mpbird 225 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  ( N  x.  ( M  /  N ) ) )
139138, 89breqtrd 4021 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm 
M ) )  -> 
( N  x.  ( A Yrm 
N ) )  ||  M )
14011adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  e.  ZZ )
1413, 6zmulcld 10090 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( N  x.  ( A Yrm  N
) )  e.  ZZ )
1424fovcl 5883 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ )  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
1431, 141, 142syl2anc 645 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ )
144143adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ )
14525adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  M
)  e.  ZZ )
146 nnm1nn0 9972 . . . . . . . . 9  |-  ( ( A Yrm  N )  e.  NN  ->  ( ( A Yrm  N )  -  1 )  e. 
NN0 )
147128, 146syl 17 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  - 
1 )  e.  NN0 )
148 zexpcl 11084 . . . . . . . 8  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( ( A Yrm  N )  -  1 )  e.  NN0 )  ->  ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ )
14916, 147, 148syl2anc 645 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  ZZ )
150 dvdsmul2 12513 . . . . . . 7  |-  ( ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 2 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
151149, 11, 150syl2anc 645 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) ) )
15218oveq2d 5808 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) ) )
153149zcnd 10085 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  e.  CC )
154153, 7, 7mul12d 8989 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N )  x.  ( A Yrm 
N ) ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )
155152, 154eqtrd 2290 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( ( A Yrm  N ) ^ 2 ) )  =  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
156151, 155breqtrd 4021 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )
157149, 6zmulcld 10090 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) )  e.  ZZ )
1586, 157zmulcld 10090 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )
159143, 158zsubcld 10089 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) )  e.  ZZ )
160 jm2.23 26456 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  ( A Yrm  N )  e.  NN )  ->  ( ( A Yrm  N ) ^ 3 ) 
||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ (
( A Yrm  N )  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
1611, 3, 128, 160syl3anc 1187 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
162 dvdstr 12524 . . . . . . . 8  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  (
( A Yrm  N ) ^
3 )  /\  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )
163162imp 420 . . . . . . 7  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  (
( A Yrm  N ) ^
3 )  e.  ZZ  /\  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  N ) ^ 3 )  /\  ( ( A Yrm  N ) ^ 3 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) ) )  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  -  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16411, 65, 159, 79, 161, 163syl32anc 1195 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  (
( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  ( ( A Yrm  N )  x.  (
( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
165 dvdssub2 12528 . . . . . 6  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) )  e.  ZZ )  /\  ( ( A Yrm  N ) ^ 2 )  ||  ( ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  -  (
( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^ ( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm 
N ) ) ) ) )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
16611, 143, 158, 164, 165syl31anc 1190 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  <->  ( ( A Yrm  N ) ^ 2 ) 
||  ( ( A Yrm  N )  x.  ( ( ( A Xrm  N ) ^
( ( A Yrm  N )  -  1 ) )  x.  ( A Yrm  N ) ) ) ) )
167156, 166mpbird 225 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) )
168167adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) ) )
169 simpr 449 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) ) 
||  M )
170 simpl1 963 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  A  e.  ( ZZ>= `  2 )
)
171141adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( N  x.  ( A Yrm  N ) )  e.  ZZ )
17223adantr 453 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  M  e.  ZZ )
173 jm2.19 26453 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  ( N  x.  ( A Yrm  N
) )  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  x.  ( A Yrm  N ) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )
174170, 171, 172, 173syl3anc 1187 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( N  x.  ( A Yrm  N
) )  ||  M  <->  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) ) 
||  ( A Yrm  M ) ) )
175169, 174mpbid 203 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) )
176 dvdstr 12524 . . . 4  |-  ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  e.  ZZ  /\  ( A Yrm  M )  e.  ZZ )  ->  ( ( ( ( A Yrm  N ) ^
2 )  ||  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm 
M ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) ) )
177176imp 420 . . 3  |-  ( ( ( ( ( A Yrm  N ) ^ 2 )  e.  ZZ  /\  ( A Yrm  ( N  x.  ( A Yrm 
N ) ) )  e.  ZZ  /\  ( A Yrm 
M )  e.  ZZ )  /\  ( ( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  /\  ( A Yrm  ( N  x.  ( A Yrm  N ) ) )  ||  ( A Yrm  M ) ) )  -> 
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M ) )
178140, 144, 145, 168, 175, 177syl32anc 1195 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  M  e.  NN  /\  N  e.  NN )  /\  ( N  x.  ( A Yrm  N
) )  ||  M
)  ->  ( ( A Yrm 
N ) ^ 2 )  ||  ( A Yrm  M ) )
179139, 178impbida 808 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  M  e.  NN  /\  N  e.  NN )  ->  (
( ( A Yrm  N ) ^ 2 )  ||  ( A Yrm  M )  <->  ( N  x.  ( A Yrm  N ) ) 
||  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   CCcc 8703   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   3c3 9764   NN0cn0 9932   ZZcz 9991   ZZ>=cuz 10197   ^cexp 11070    || cdivides 12493    gcd cgcd 12647   Xrm crmx 26352   Yrm crmy 26353
This theorem is referenced by:  jm2.27a  26465  jm2.27c  26467
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-sum 12124  df-ef 12311  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-numer 12768  df-denom 12769  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-submnd 14378  df-mulg 14454  df-cntz 14755  df-cmn 15053  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-limc 19178  df-dv 19179  df-log 19876  df-squarenn 26293  df-pell1qr 26294  df-pell14qr 26295  df-pell1234qr 26296  df-pellfund 26297  df-rmx 26354  df-rmy 26355
  Copyright terms: Public domain W3C validator