Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Unicode version

Theorem jm2.23 27100
Description: Lemma for jm2.20nn 27101. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )

Proof of Theorem jm2.23
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 11036 . . . . . 6  |-  ( 3 ... J )  e. 
Fin
2 ssrab2 3260 . . . . . 6  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J
)
3 ssfi 7085 . . . . . 6  |-  ( ( ( 3 ... J
)  e.  Fin  /\  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  C_  ( 3 ... J ) )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
41, 2, 3mp2an 653 . . . . 5  |-  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin
54a1i 10 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  e.  Fin )
6 nnnn0 9974 . . . . . . . 8  |-  ( J  e.  NN  ->  J  e.  NN0 )
763ad2ant3 978 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  NN0 )
82sseli 3178 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 3 ... J
) )
9 elfzelz 10800 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ZZ )
108, 9syl 15 . . . . . . 7  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
11 bccl 11336 . . . . . . 7  |-  ( ( J  e.  NN0  /\  a  e.  ZZ )  ->  ( J  _C  a
)  e.  NN0 )
127, 10, 11syl2an 463 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
1312nn0zd 10117 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  ZZ )
14 simpl1 958 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  A  e.  ( ZZ>= `  2 )
)
15 simpl2 959 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  N  e.  ZZ )
16 frmx 27009 . . . . . . . . . 10  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1716fovcl 5951 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
1814, 15, 17syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  NN0 )
1918nn0zd 10117 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  ZZ )
208adantl 452 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 3 ... J
) )
21 fznn0sub 10826 . . . . . . . 8  |-  ( a  e.  ( 3 ... J )  ->  ( J  -  a )  e.  NN0 )
2220, 21syl 15 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
23 zexpcl 11120 . . . . . . 7  |-  ( ( ( A Xrm  N )  e.  ZZ  /\  ( J  -  a )  e. 
NN0 )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
2419, 22, 23syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  ZZ )
25 rmspecnonsq 27003 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ( NN  \NN ) )
26 eldifi 3300 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  -  1 )  e.  ( NN  \NN )  -> 
( ( A ^
2 )  -  1 )  e.  NN )
2725, 26syl 15 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  NN )
2827nnzd 10118 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  ZZ )
29283ad2ant1 976 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  ZZ )
30 breq2 4029 . . . . . . . . . . . . . 14  |-  ( b  =  a  ->  (
2  ||  b  <->  2  ||  a ) )
3130notbid 285 . . . . . . . . . . . . 13  |-  ( b  =  a  ->  ( -.  2  ||  b  <->  -.  2  ||  a ) )
3231elrab 2925 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a ) )
3332simprbi 450 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
34 1z 10055 . . . . . . . . . . . 12  |-  1  e.  ZZ
3534a1i 10 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
36 0z 10037 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
37 2nn 9879 . . . . . . . . . . . . . . 15  |-  2  e.  NN
38 1lt2 9888 . . . . . . . . . . . . . . 15  |-  1  <  2
3936, 37, 383pm3.2i 1130 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )
40 2z 10056 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
41 dvds0 12546 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ZZ  ->  2  ||  0 )
4240, 41ax-mp 8 . . . . . . . . . . . . . 14  |-  2  ||  0
43 ndvdsp1 12610 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  0  ->  -.  2  ||  ( 0  +  1 ) ) )
4439, 42, 43mp2 17 . . . . . . . . . . . . 13  |-  -.  2  ||  ( 0  +  1 )
45 0p1e1 9841 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
4645breq2i 4033 . . . . . . . . . . . . 13  |-  ( 2 
||  ( 0  +  1 )  <->  2  ||  1 )
4744, 46mtbi 289 . . . . . . . . . . . 12  |-  -.  2  ||  1
4847a1i 10 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
49 omoe 12867 . . . . . . . . . . 11  |-  ( ( ( a  e.  ZZ  /\ 
-.  2  ||  a
)  /\  ( 1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  (
a  -  1 ) )
5010, 33, 35, 48, 49syl22anc 1183 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
5140a1i 10 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
52 2ne0 9831 . . . . . . . . . . . 12  |-  2  =/=  0
5352a1i 10 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
54 peano2zm 10064 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  (
a  -  1 )  e.  ZZ )
5510, 54syl 15 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
56 dvdsval2 12536 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
a  -  1 )  e.  ZZ )  -> 
( 2  ||  (
a  -  1 )  <-> 
( ( a  - 
1 )  /  2
)  e.  ZZ ) )
5751, 53, 55, 56syl3anc 1182 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
5850, 57mpbid 201 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
5955zred 10119 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
60 0re 8840 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
6160a1i 10 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  e.  RR )
62 3re 9819 . . . . . . . . . . . . . . . 16  |-  3  e.  RR
6362a1i 10 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  e.  RR )
649zred 10119 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  a  e.  RR )
65 3pos 9832 . . . . . . . . . . . . . . . 16  |-  0  <  3
6665a1i 10 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  0  <  3 )
67 elfzle1 10801 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 3 ... J )  ->  3  <_  a )
6861, 63, 64, 66, 67ltletrd 8978 . . . . . . . . . . . . . 14  |-  ( a  e.  ( 3 ... J )  ->  0  <  a )
69 elnnz 10036 . . . . . . . . . . . . . 14  |-  ( a  e.  NN  <->  ( a  e.  ZZ  /\  0  < 
a ) )
709, 68, 69sylanbrc 645 . . . . . . . . . . . . 13  |-  ( a  e.  ( 3 ... J )  ->  a  e.  NN )
71 nnm1nn0 10007 . . . . . . . . . . . . 13  |-  ( a  e.  NN  ->  (
a  -  1 )  e.  NN0 )
7270, 71syl 15 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  1 )  e.  NN0 )
7372nn0ge0d 10023 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  1 ) )
748, 73syl 15 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
75 2re 9817 . . . . . . . . . . 11  |-  2  e.  RR
7675a1i 10 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
77 2pos 9830 . . . . . . . . . . 11  |-  0  <  2
7877a1i 10 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
79 divge0 9627 . . . . . . . . . 10  |-  ( ( ( ( a  - 
1 )  e.  RR  /\  0  <_  ( a  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
a  -  1 )  /  2 ) )
8059, 74, 76, 78, 79syl22anc 1183 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
81 elnn0z 10038 . . . . . . . . 9  |-  ( ( ( a  -  1 )  /  2 )  e.  NN0  <->  ( ( ( a  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( a  - 
1 )  /  2
) ) )
8258, 80, 81sylanbrc 645 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
83 zexpcl 11120 . . . . . . . 8  |-  ( ( ( ( A ^
2 )  -  1 )  e.  ZZ  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  ZZ )
8429, 82, 83syl2an 463 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  ZZ )
85 frmy 27010 . . . . . . . . . 10  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
8685fovcl 5951 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
8714, 15, 86syl2anc 642 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  ZZ )
88 elfzel1 10799 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  3  e.  ZZ )
899, 88zsubcld 10124 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  ZZ )
90 subge0 9289 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  3  e.  RR )  ->  ( 0  <_  (
a  -  3 )  <->  3  <_  a )
)
9164, 62, 90sylancl 643 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  (
0  <_  ( a  -  3 )  <->  3  <_  a ) )
9267, 91mpbird 223 . . . . . . . . . . 11  |-  ( a  e.  ( 3 ... J )  ->  0  <_  ( a  -  3 ) )
93 elnn0z 10038 . . . . . . . . . . 11  |-  ( ( a  -  3 )  e.  NN0  <->  ( ( a  -  3 )  e.  ZZ  /\  0  <_ 
( a  -  3 ) ) )
9489, 92, 93sylanbrc 645 . . . . . . . . . 10  |-  ( a  e.  ( 3 ... J )  ->  (
a  -  3 )  e.  NN0 )
958, 94syl 15 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ->  (
a  -  3 )  e.  NN0 )
9695adantl 452 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
a  -  3 )  e.  NN0 )
97 zexpcl 11120 . . . . . . . 8  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
9887, 96, 97syl2anc 642 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  ZZ )
9984, 98zmulcld 10125 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  ZZ )
10024, 99zmulcld 10125 . . . . 5  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  ZZ )
10113, 100zmulcld 10125 . . . 4  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  ZZ )
1025, 101fsumzcl 12210 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ )
103863adant3 975 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  ZZ )
104 3nn0 9985 . . . 4  |-  3  e.  NN0
105 zexpcl 11120 . . . 4  |-  ( ( ( A Yrm  N )  e.  ZZ  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
106103, 104, 105sylancl 643 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  ZZ )
107 dvdsmul2 12553 . . 3  |-  ( (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  ZZ  /\  ( ( A Yrm  N ) ^ 3 )  e.  ZZ )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
108102, 106, 107syl2anc 642 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
109 jm2.22 27099 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e. 
NN0 )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
1106, 109syl3an3 1217 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  sum_ a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )
111 1lt3 9890 . . . . . . . . . . . 12  |-  1  <  3
112 1re 8839 . . . . . . . . . . . . 13  |-  1  e.  RR
113112, 62ltnlei 8941 . . . . . . . . . . . 12  |-  ( 1  <  3  <->  -.  3  <_  1 )
114111, 113mpbi 199 . . . . . . . . . . 11  |-  -.  3  <_  1
115 elfzle1 10801 . . . . . . . . . . 11  |-  ( 1  e.  ( 3 ... J )  ->  3  <_  1 )
116114, 115mto 167 . . . . . . . . . 10  |-  -.  1  e.  ( 3 ... J
)
117116a1i 10 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  ( 3 ... J ) )
118117intnanrd 883 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
119 breq2 4029 . . . . . . . . . 10  |-  ( b  =  1  ->  (
2  ||  b  <->  2  ||  1 ) )
120119notbid 285 . . . . . . . . 9  |-  ( b  =  1  ->  ( -.  2  ||  b  <->  -.  2  ||  1 ) )
121120elrab 2925 . . . . . . . 8  |-  ( 1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  <->  ( 1  e.  ( 3 ... J )  /\  -.  2  ||  1 ) )
122118, 121sylnibr 296 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
123 disjsn 3695 . . . . . . 7  |-  ( ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b } )
124122, 123sylibr 203 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  i^i  { 1 } )  =  (/) )
125 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  a  =  1 )
126125olcd 382 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =  1 )  ->  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
127 elfznn0 10824 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  NN0 )
128127adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  NN0 )
129128ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  NN0 )
130 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  -.  2  ||  a )
131 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  =/=  1 )
132 elnn1uz2 10296 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN  <->  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )
133 df-ne 2450 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  =/=  1  <->  -.  a  =  1 )
134133biimpi 186 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =/=  1  ->  -.  a  =  1 )
1351343ad2ant3 978 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  ->  -.  a  =  1
)
136135pm2.21d 98 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  =  1  ->  3  <_  a
) )
137136imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
1 )  ->  3  <_  a )
138 uzp1 10263 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( ZZ>= `  2
)  ->  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )
139 dvdsmul1 12552 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  2  ||  ( 2  x.  1 ) )
14040, 34, 139mp2an 653 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  ||  ( 2  x.  1 )
141 2cn 9818 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  CC
142141mulid1i 8841 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  x.  1 )  =  2
143140, 142breqtri 4048 . . . . . . . . . . . . . . . . . . . . 21  |-  2  ||  2
144 breq2 4029 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  =  2  ->  (
2  ||  a  <->  2  ||  2 ) )
145144adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  (
2  ||  a  <->  2  ||  2 ) )
146143, 145mpbiri 224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  2  ||  a )
147 simpl2 959 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  -.  2  ||  a )
148 pm2.24 101 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2 
||  a  ->  ( -.  2  ||  a  -> 
3  <_  a )
)
149146, 147, 148sylc 56 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
2 )  ->  3  <_  a )
150 eluzle 10242 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ( ZZ>= `  3
)  ->  3  <_  a )
151 2p1e3 9849 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
152151fveq2i 5530 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ZZ>= `  ( 2  +  1 ) )  =  (
ZZ>= `  3 )
153150, 152eleq2s 2377 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  ( ZZ>= `  (
2  +  1 ) )  ->  3  <_  a )
154153adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  ( 2  +  1 ) ) )  ->  3  <_  a )
155149, 154jaodan 760 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  2  \/  a  e.  ( ZZ>= `  ( 2  +  1 ) ) ) )  ->  3  <_  a )
156138, 155sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  ( ZZ>= `  2 )
)  ->  3  <_  a )
157137, 156jaodan 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  ( a  =  1  \/  a  e.  ( ZZ>= `  2 )
) )  ->  3  <_  a )
158132, 157sylan2b 461 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  e.  NN )  ->  3  <_ 
a )
159 breq2 4029 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
2  ||  a  <->  2  ||  0 ) )
16042, 159mpbiri 224 . . . . . . . . . . . . . . . . 17  |-  ( a  =  0  ->  2  ||  a )
161160adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  2  ||  a )
162 simpl2 959 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  -.  2  ||  a )
163161, 162, 148sylc 56 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  NN0  /\ 
-.  2  ||  a  /\  a  =/=  1
)  /\  a  = 
0 )  ->  3  <_  a )
164 elnn0 9969 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  NN0  <->  ( a  e.  NN  \/  a  =  0 ) )
165164biimpi 186 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  ( a  e.  NN  \/  a  =  0 ) )
1661653ad2ant1 976 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
( a  e.  NN  \/  a  =  0
) )
167158, 163, 166mpjaodan 761 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  -.  2  ||  a  /\  a  =/=  1 )  -> 
3  <_  a )
168129, 130, 131, 167syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  <_  a )
169 elfzle2 10802 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( 0 ... J )  ->  a  <_  J )
170169adantr 451 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  <_  J
)
171170ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  <_  J )
172 elfzelz 10800 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... J )  ->  a  e.  ZZ )
173172adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  a  e.  ZZ )
174173ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ZZ )
175104nn0zi 10050 . . . . . . . . . . . . . . 15  |-  3  e.  ZZ
176175a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
3  e.  ZZ )
177 nnz 10047 . . . . . . . . . . . . . . . 16  |-  ( J  e.  NN  ->  J  e.  ZZ )
1781773ad2ant3 978 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  e.  ZZ )
179178ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  ->  J  e.  ZZ )
180 elfz 10790 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  3  e.  ZZ  /\  J  e.  ZZ )  ->  (
a  e.  ( 3 ... J )  <->  ( 3  <_  a  /\  a  <_  J ) ) )
181174, 176, 179, 180syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  <-> 
( 3  <_  a  /\  a  <_  J ) ) )
182168, 171, 181mpbir2and 888 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
a  e.  ( 3 ... J ) )
183182, 130jca 518 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )
184183orcd 381 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )  /\  a  =/=  1 )  -> 
( ( a  e.  ( 3 ... J
)  /\  -.  2  ||  a )  \/  a  =  1 ) )
185126, 184pm2.61dane 2526 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )  ->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
186 nn0uz 10264 . . . . . . . . . . . . . . 15  |-  NN0  =  ( ZZ>= `  0 )
187104, 186eleqtri 2357 . . . . . . . . . . . . . 14  |-  3  e.  ( ZZ>= `  0 )
188 fzss1 10832 . . . . . . . . . . . . . 14  |-  ( 3  e.  ( ZZ>= `  0
)  ->  ( 3 ... J )  C_  ( 0 ... J
) )
189187, 188ax-mp 8 . . . . . . . . . . . . 13  |-  ( 3 ... J )  C_  ( 0 ... J
)
190189sseli 3178 . . . . . . . . . . . 12  |-  ( a  e.  ( 3 ... J )  ->  a  e.  ( 0 ... J
) )
191190anim1i 551 . . . . . . . . . . 11  |-  ( ( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
192191adantl 452 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
a  e.  ( 3 ... J )  /\  -.  2  ||  a ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
193 0le1 9299 . . . . . . . . . . . . 13  |-  0  <_  1
194193a1i 10 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  <_  1 )
195 nnge1 9774 . . . . . . . . . . . . . 14  |-  ( J  e.  NN  ->  1  <_  J )
1961953ad2ant3 978 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  1  <_  J )
197196adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  <_  J )
19834a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ZZ )
19936a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
0  e.  ZZ )
200178adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  J  e.  ZZ )
201 elfz 10790 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  J  e.  ZZ )  ->  (
1  e.  ( 0 ... J )  <->  ( 0  <_  1  /\  1  <_  J ) ) )
202198, 199, 200, 201syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( 1  e.  ( 0 ... J )  <-> 
( 0  <_  1  /\  1  <_  J ) ) )
203194, 197, 202mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
1  e.  ( 0 ... J ) )
20447a1i 10 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  ->  -.  2  ||  1 )
205 eleq1 2345 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  e.  ( 0 ... J )  <->  1  e.  ( 0 ... J
) ) )
206 breq2 4029 . . . . . . . . . . . . . 14  |-  ( a  =  1  ->  (
2  ||  a  <->  2  ||  1 ) )
207206notbid 285 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  ( -.  2  ||  a  <->  -.  2  ||  1 ) )
208205, 207anbi12d 691 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
209208adantl 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a )  <->  ( 1  e.  ( 0 ... J )  /\  -.  2  ||  1 ) ) )
210203, 204, 209mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  =  1 )  -> 
( a  e.  ( 0 ... J )  /\  -.  2  ||  a ) )
211192, 210jaodan 760 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  (
( a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )  ->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
212185, 211impbida 805 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) ) )
21331elrab 2925 . . . . . . . 8  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  <->  ( a  e.  ( 0 ... J
)  /\  -.  2  ||  a ) )
214 elun 3318 . . . . . . . . 9  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } ) )
215 elsn 3657 . . . . . . . . . 10  |-  ( a  e.  { 1 }  <-> 
a  =  1 )
21632, 215orbi12i 507 . . . . . . . . 9  |-  ( ( a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  \/  a  e.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
217214, 216bitri 240 . . . . . . . 8  |-  ( a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } )  <->  ( (
a  e.  ( 3 ... J )  /\  -.  2  ||  a )  \/  a  =  1 ) )
218212, 213, 2173bitr4g 279 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  <->  a  e.  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) ) )
219218eqrdv 2283 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  =  ( { b  e.  ( 3 ... J )  |  -.  2  ||  b }  u.  { 1 } ) )
220 fzfi 11036 . . . . . . . 8  |-  ( 0 ... J )  e. 
Fin
221 ssrab2 3260 . . . . . . . 8  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J
)
222 ssfi 7085 . . . . . . . 8  |-  ( ( ( 0 ... J
)  e.  Fin  /\  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  C_  ( 0 ... J ) )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
223220, 221, 222mp2an 653 . . . . . . 7  |-  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin
224223a1i 10 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  e.  Fin )
225221sseli 3178 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ( 0 ... J
) )
226225, 172syl 15 . . . . . . . . 9  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  ZZ )
2277, 226, 11syl2an 463 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e. 
NN0 )
228227nn0cnd 10022 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
229173adant3 975 . . . . . . . . . . 11  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  NN0 )
230229nn0cnd 10022 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Xrm 
N )  e.  CC )
231230adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
232225adantl 452 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  a  e.  ( 0 ... J
) )
233 fznn0sub 10826 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... J )  ->  ( J  -  a )  e.  NN0 )
234232, 233syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  ( J  -  a )  e.  NN0 )
235231, 234expcld 11247 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
236103zcnd 10120 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  e.  CC )
237225, 127syl 15 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN0 )
238 expcl 11123 . . . . . . . . . 10  |-  ( ( ( A Yrm  N )  e.  CC  /\  a  e. 
NN0 )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
239236, 237, 238syl2an 463 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
a )  e.  CC )
240 rmspecpos 27012 . . . . . . . . . . . 12  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  RR+ )
241240rpcnd 10394 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( ( A ^ 2 )  - 
1 )  e.  CC )
2422413ad2ant1 976 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A ^ 2 )  -  1 )  e.  CC )
243213simprbi 450 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  a )
24434a1i 10 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  1  e.  ZZ )
24547a1i 10 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  2  ||  1 )
246226, 243, 244, 245, 49syl22anc 1183 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  ||  ( a  -  1 ) )
24740a1i 10 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  ZZ )
24852a1i 10 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  =/=  0 )
249226, 54syl 15 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  ZZ )
250247, 248, 249, 56syl3anc 1182 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
2  ||  ( a  -  1 )  <->  ( (
a  -  1 )  /  2 )  e.  ZZ ) )
251246, 250mpbid 201 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  ZZ )
252249zred 10119 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  RR )
253160a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  ( 0 ... J )  ->  (
a  =  0  -> 
2  ||  a )
)
254253con3and 428 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  ( 0 ... J )  /\  -.  2  ||  a )  ->  -.  a  = 
0 )
255213, 254sylbi 187 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  -.  a  =  0 )
256237, 165syl 15 . . . . . . . . . . . . . . 15  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  e.  NN  \/  a  =  0 ) )
257 orel2 372 . . . . . . . . . . . . . . 15  |-  ( -.  a  =  0  -> 
( ( a  e.  NN  \/  a  =  0 )  ->  a  e.  NN ) )
258255, 256, 257sylc 56 . . . . . . . . . . . . . 14  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  a  e.  NN )
259258, 71syl 15 . . . . . . . . . . . . 13  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
a  -  1 )  e.  NN0 )
260259nn0ge0d 10023 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( a  -  1 ) )
26175a1i 10 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  2  e.  RR )
26277a1i 10 . . . . . . . . . . . 12  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <  2 )
263252, 260, 261, 262, 79syl22anc 1183 . . . . . . . . . . 11  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  0  <_  ( ( a  - 
1 )  /  2
) )
264251, 263, 81sylanbrc 645 . . . . . . . . . 10  |-  ( a  e.  { b  e.  ( 0 ... J
)  |  -.  2  ||  b }  ->  (
( a  -  1 )  /  2 )  e.  NN0 )
265 expcl 11123 . . . . . . . . . 10  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( a  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  e.  CC )
266242, 264, 265syl2an 463 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
267239, 266mulcld 8857 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  e.  CC )
268235, 267mulcld 8857 . . . . . . 7  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  e.  CC )
269228, 268mulcld 8857 . . . . . 6  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  e.  CC )
270124, 219, 224, 269fsumsplit 12214 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 0 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  +  sum_ a  e.  { 1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) ) )
271 expcl 11123 . . . . . . . . 9  |-  ( ( ( A Yrm  N )  e.  CC  /\  3  e. 
NN0 )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
272236, 104, 271sylancl 643 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
273101zcnd 10120 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  e.  CC )
2745, 272, 273fsummulc1 12249 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
27512nn0cnd 10022 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( J  _C  a )  e.  CC )
276230adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Xrm 
N )  e.  CC )
277276, 22expcld 11247 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Xrm  N ) ^
( J  -  a
) )  e.  CC )
278242, 82, 265syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  e.  CC )
279 expcl 11123 . . . . . . . . . . . . 13  |-  ( ( ( A Yrm  N )  e.  CC  /\  ( a  -  3 )  e. 
NN0 )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
280236, 95, 279syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( a  -  3 ) )  e.  CC )
281278, 280mulcld 8857 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) )  e.  CC )
282277, 281mulcld 8857 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  e.  CC )
283272adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
3 )  e.  CC )
284275, 282, 283mulassd 8860 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
285277, 281, 283mulassd 8860 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
286278, 280, 283mulassd 8860 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) ) )
287280, 283mulcld 8857 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
288278, 287mulcomd 8858 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) ) )  =  ( ( ( ( A Yrm  N ) ^
( a  -  3 ) )  x.  (
( A Yrm  N ) ^
3 ) )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) )
289236adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  ( A Yrm 
N )  e.  CC )
290104a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  3  e.  NN0 )
291289, 290, 96expaddd 11249 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
29210adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  ZZ )
293292zcnd 10120 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  a  e.  CC )
294 3cn 9820 . . . . . . . . . . . . . . . . 17  |-  3  e.  CC
295 npcan 9062 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  CC  /\  3  e.  CC )  ->  ( ( a  - 
3 )  +  3 )  =  a )
296293, 294, 295sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( a  -  3 )  +  3 )  =  a )
297296oveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( A Yrm  N ) ^
( ( a  - 
3 )  +  3 ) )  =  ( ( A Yrm  N ) ^
a ) )
298291, 297eqtr3d 2319 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Yrm  N ) ^ ( a  - 
3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( A Yrm  N ) ^ a ) )
299298oveq1d 5875 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Yrm  N ) ^ ( a  -  3 ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
300286, 288, 2993eqtrd 2321 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) )
301300oveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
302285, 301eqtrd 2317 . . . . . . . . . 10  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) ) )
303302oveq2d 5876 . . . . . . . . 9  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( J  _C  a
)  x.  ( ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
304284, 303eqtrd 2317 . . . . . . . 8  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  N  e.  ZZ  /\  J  e.  NN )  /\  a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b } )  ->  (
( ( J  _C  a )  x.  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) )  x.  (
( A Yrm  N ) ^
( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  ( ( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) ) )
305304sumeq2dv 12178 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  =  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) ) )
306274, 305eqtr2d 2318 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a
)  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
307 1nn 9759 . . . . . . 7  |-  1  e.  NN
308 bccl 11336 . . . . . . . . . . 11  |-  ( ( J  e.  NN0  /\  1  e.  ZZ )  ->  ( J  _C  1
)  e.  NN0 )
3096, 34, 308sylancl 643 . . . . . . . . . 10  |-  ( J  e.  NN  ->  ( J  _C  1 )  e. 
NN0 )
310309nn0cnd 10022 . . . . . . . . 9  |-  ( J  e.  NN  ->  ( J  _C  1 )  e.  CC )
3113103ad2ant3 978 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  e.  CC )
312 nnm1nn0 10007 . . . . . . . . . . 11  |-  ( J  e.  NN  ->  ( J  -  1 )  e.  NN0 )
3133123ad2ant3 978 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  -  1 )  e.  NN0 )
314230, 313expcld 11247 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Xrm  N ) ^
( J  -  1 ) )  e.  CC )
315 1nn0 9983 . . . . . . . . . . 11  |-  1  e.  NN0
316 expcl 11123 . . . . . . . . . . 11  |-  ( ( ( A Yrm  N )  e.  CC  /\  1  e. 
NN0 )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
317236, 315, 316sylancl 643 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  e.  CC )
318 1m1e0 9816 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
319318oveq1i 5870 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  /  2 )  =  ( 0  /  2
)
320141, 52div0i 9496 . . . . . . . . . . . . 13  |-  ( 0  /  2 )  =  0
321319, 320eqtri 2305 . . . . . . . . . . . 12  |-  ( ( 1  -  1 )  /  2 )  =  0
322 0nn0 9982 . . . . . . . . . . . 12  |-  0  e.  NN0
323321, 322eqeltri 2355 . . . . . . . . . . 11  |-  ( ( 1  -  1 )  /  2 )  e. 
NN0
324 expcl 11123 . . . . . . . . . . 11  |-  ( ( ( ( A ^
2 )  -  1 )  e.  CC  /\  ( ( 1  -  1 )  /  2
)  e.  NN0 )  ->  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) )  e.  CC )
325242, 323, 324sylancl 643 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  e.  CC )
326317, 325mulcld 8857 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  e.  CC )
327314, 326mulcld 8857 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) )  e.  CC )
328311, 327mulcld 8857 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) )  e.  CC )
329 oveq2 5868 . . . . . . . . 9  |-  ( a  =  1  ->  ( J  _C  a )  =  ( J  _C  1
) )
330 oveq2 5868 . . . . . . . . . . 11  |-  ( a  =  1  ->  ( J  -  a )  =  ( J  - 
1 ) )
331330oveq2d 5876 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( A Xrm  N ) ^
( J  -  a
) )  =  ( ( A Xrm  N ) ^
( J  -  1 ) ) )
332 oveq2 5868 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( A Yrm  N ) ^
a )  =  ( ( A Yrm  N ) ^
1 ) )
333 oveq1 5867 . . . . . . . . . . . . 13  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
334333oveq1d 5875 . . . . . . . . . . . 12  |-  ( a  =  1  ->  (
( a  -  1 )  /  2 )  =  ( ( 1  -  1 )  / 
2 ) )
335334oveq2d 5876 . . . . . . . . . . 11  |-  ( a  =  1  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) )
336332, 335oveq12d 5878 . . . . . . . . . 10  |-  ( a  =  1  ->  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
337331, 336oveq12d 5878 . . . . . . . . 9  |-  ( a  =  1  ->  (
( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( a  - 
1 )  /  2
) ) ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
338329, 337oveq12d 5878 . . . . . . . 8  |-  ( a  =  1  ->  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
339338sumsn 12215 . . . . . . 7  |-  ( ( 1  e.  NN  /\  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) )  e.  CC )  ->  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )
340307, 328, 339sylancr 644 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { 1 }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
341306, 340oveq12d 5878 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( A Yrm  N ) ^ a )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) ) ) ) )  +  sum_ a  e.  {
1 }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( A Yrm  N ) ^
a )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) ) ) ) ) )  =  ( ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  +  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) ) )
342110, 270, 3413eqtrd 2321 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm  ( N  x.  J
) )  =  ( ( sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) ) )
343 bcn1 11327 . . . . . . 7  |-  ( J  e.  NN0  ->  ( J  _C  1 )  =  J )
3447, 343syl 15 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  _C  1 )  =  J )
345344eqcomd 2290 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  J  =  ( J  _C  1 ) )
346236exp1d 11242 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
1 )  =  ( A Yrm  N ) )
347321a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( 1  -  1 )  /  2 )  =  0 )
348347oveq2d 5876 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  ( ( ( A ^ 2 )  -  1 ) ^
0 ) )
349242exp0d 11241 . . . . . . . . 9  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ 0 )  =  1 )
350348, 349eqtrd 2317 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) )  =  1 )
351346, 350oveq12d 5878 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) )  =  ( ( A Yrm  N )  x.  1 ) )
352236mulid1d 8854 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N )  x.  1 )  =  ( A Yrm  N ) )
353351, 352eqtr2d 2318 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( A Yrm 
N )  =  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) )
354353oveq2d 5876 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) )  =  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^
1 )  x.  (
( ( A ^
2 )  -  1 ) ^ ( ( 1  -  1 )  /  2 ) ) ) ) )
355345, 354oveq12d 5878 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( J  x.  ( (
( A Xrm  N ) ^
( J  -  1 ) )  x.  ( A Yrm 
N ) ) )  =  ( ( J  _C  1 )  x.  ( ( ( A Xrm  N ) ^ ( J  -  1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^ ( ( 1  -  1 )  / 
2 ) ) ) ) ) )
356342, 355oveq12d 5878 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  ( ( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) ) )
3575, 273fsumcl 12208 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  e.  CC )
358357, 272mulcld 8857 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  (
( J  _C  a
)  x.  ( ( ( A Xrm  N ) ^
( J  -  a
) )  x.  (
( ( ( A ^ 2 )  - 
1 ) ^ (
( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ (
a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) )  e.  CC )
359358, 328pncand 9160 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( ( sum_ a  e.  { b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) )  +  ( ( J  _C  1 )  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( ( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  -  1 ) ^
( ( 1  -  1 )  /  2
) ) ) ) ) )  -  (
( J  _C  1
)  x.  ( ( ( A Xrm  N ) ^
( J  -  1 ) )  x.  (
( ( A Yrm  N ) ^ 1 )  x.  ( ( ( A ^ 2 )  - 
1 ) ^ (
( 1  -  1 )  /  2 ) ) ) ) ) )  =  ( sum_ a  e.  { b  e.  ( 3 ... J
)  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a )
)  x.  ( ( ( ( A ^
2 )  -  1 ) ^ ( ( a  -  1 )  /  2 ) )  x.  ( ( A Yrm  N ) ^ ( a  -  3 ) ) ) ) )  x.  ( ( A Yrm  N ) ^ 3 ) ) )
360356, 359eqtrd 2317 . 2  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) )  =  (
sum_ a  e.  {
b  e.  ( 3 ... J )  |  -.  2  ||  b }  ( ( J  _C  a )  x.  ( ( ( A Xrm  N ) ^ ( J  -  a ) )  x.  ( ( ( ( A ^ 2 )  -  1 ) ^ ( ( a  -  1 )  / 
2 ) )  x.  ( ( A Yrm  N ) ^ ( a  - 
3 ) ) ) ) )  x.  (
( A Yrm  N ) ^
3 ) ) )
361108, 360breqtrrd 4051 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ  /\  J  e.  NN )  ->  (
( A Yrm  N ) ^
3 )  ||  (
( A Yrm  ( N  x.  J ) )  -  ( J  x.  (
( ( A Xrm  N ) ^ ( J  - 
1 ) )  x.  ( A Yrm  N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   {crab 2549    \ cdif 3151    u. cun 3152    i^i cin 3153    C_ wss 3154   (/)c0 3457   {csn 3642   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Fincfn 6865   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    < clt 8869    <_ cle 8870    - cmin 9039    / cdiv 9425   NNcn 9748   2c2 9797   3c3 9798   NN0cn0 9967   ZZcz 10026   ZZ>=cuz 10232   ...cfz 10784   ^cexp 11106    _C cbc 11317   sum_csu 12160    || cdivides 12533  ◻NNcsquarenn 26932   Xrm crmx 26996   Yrm crmy 26997
This theorem is referenced by:  jm2.20nn  27101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-omul 6486  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-acn 7577  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-prm 12761  df-numer 12808  df-denom 12809  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-squarenn 26937  df-pell1qr 26938  df-pell14qr 26939  df-pell1234qr 26940  df-pellfund 26941  df-rmx 26998  df-rmy 26999
  Copyright terms: Public domain W3C validator