Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm3.1 Unicode version

Theorem jm3.1 26279
Description: Diophantine expression for exponentiation. Lemma 3.1 of [JonesMatijasevic] p. 698. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
jm3.1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( K ^ N )  =  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  mod  ( ( ( ( 2  x.  A )  x.  K
)  -  ( K ^ 2 ) )  -  1 ) ) )

Proof of Theorem jm3.1
StepHypRef Expression
1 simpl1 963 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  A  e.  ( ZZ>= `  2 )
)
2 simpl2 964 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  K  e.  ( ZZ>= `  2 )
)
3 simpl3 965 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  N  e.  NN )
4 simpr 449 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( K Yrm  ( N  +  1 ) )  <_  A )
51, 2, 3, 4jm3.1lem2 26277 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( K ^ N )  <  (
( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 ) )
6 2nn0 9861 . . . . . 6  |-  2  e.  NN0
7 eluznn0 10167 . . . . . 6  |-  ( ( 2  e.  NN0  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  NN0 )
86, 7mpan 654 . . . . 5  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  NN0 )
983ad2ant2 982 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  K  e.  NN0 )
109adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  K  e.  NN0 )
11 nnnn0 9851 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
123, 11syl 17 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  N  e.  NN0 )
13 jm2.18 26247 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  NN0  /\  N  e. 
NN0 )  ->  (
( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 )  ||  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  -  ( K ^ N ) ) )
141, 10, 12, 13syl3anc 1187 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( (
( ( 2  x.  A )  x.  K
)  -  ( K ^ 2 ) )  -  1 )  ||  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  -  ( K ^ N ) ) )
15 simp1 960 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  A  e.  (
ZZ>= `  2 ) )
16 nnz 9924 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ZZ )
17163ad2ant3 983 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  N  e.  ZZ )
18 frmx 26164 . . . . . . . 8  |- Xrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> NN0
1918fovcl 5801 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  e.  NN0 )
2015, 17, 19syl2anc 645 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( A Xrm  N )  e.  NN0 )
2120nn0zd 9994 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( A Xrm  N )  e.  ZZ )
22 eluzelz 10117 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ZZ )
23 eluzelz 10117 . . . . . . . 8  |-  ( K  e.  ( ZZ>= `  2
)  ->  K  e.  ZZ )
24 zsubcl 9940 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  K  e.  ZZ )  ->  ( A  -  K
)  e.  ZZ )
2522, 23, 24syl2an 465 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )
)  ->  ( A  -  K )  e.  ZZ )
26253adant3 980 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( A  -  K )  e.  ZZ )
27 frmy 26165 . . . . . . . 8  |- Yrm  : (
( ZZ>= `  2 )  X.  ZZ ) --> ZZ
2827fovcl 5801 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Yrm 
N )  e.  ZZ )
2915, 17, 28syl2anc 645 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( A Yrm  N )  e.  ZZ )
3026, 29zmulcld 10002 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( ( A  -  K )  x.  ( A Yrm  N ) )  e.  ZZ )
3121, 30zsubcld 10001 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  e.  ZZ )
3231adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( ( A Xrm 
N )  -  (
( A  -  K
)  x.  ( A Yrm  N ) ) )  e.  ZZ )
331, 2, 3, 4jm3.1lem3 26278 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( (
( ( 2  x.  A )  x.  K
)  -  ( K ^ 2 ) )  -  1 )  e.  NN )
34113ad2ant3 983 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  N  e.  NN0 )
359, 34nn0expcld 11145 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  K  e.  ( ZZ>= `  2 )  /\  N  e.  NN )  ->  ( K ^ N )  e.  NN0 )
3635adantr 453 . . 3  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( K ^ N )  e.  NN0 )
37 divalgmodcl 26246 . . 3  |-  ( ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  e.  ZZ  /\  ( ( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 )  e.  NN  /\  ( K ^ N )  e. 
NN0 )  ->  (
( K ^ N
)  =  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm 
N ) ) )  mod  ( ( ( ( 2  x.  A
)  x.  K )  -  ( K ^
2 ) )  - 
1 ) )  <->  ( ( K ^ N )  < 
( ( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  A
)  x.  K )  -  ( K ^
2 ) )  - 
1 )  ||  (
( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  -  ( K ^ N ) ) ) ) )
3832, 33, 36, 37syl3anc 1187 . 2  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( ( K ^ N )  =  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  mod  (
( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 ) )  <-> 
( ( K ^ N )  <  (
( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 )  /\  ( ( ( ( 2  x.  A )  x.  K )  -  ( K ^ 2 ) )  -  1 ) 
||  ( ( ( A Xrm  N )  -  (
( A  -  K
)  x.  ( A Yrm  N ) ) )  -  ( K ^ N ) ) ) ) )
395, 14, 38mpbir2and 893 1  |-  ( ( ( A  e.  (
ZZ>= `  2 )  /\  K  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN )  /\  ( K Yrm  ( N  +  1 ) )  <_  A
)  ->  ( K ^ N )  =  ( ( ( A Xrm  N )  -  ( ( A  -  K )  x.  ( A Yrm  N ) ) )  mod  ( ( ( ( 2  x.  A )  x.  K
)  -  ( K ^ 2 ) )  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   1c1 8618    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748    - cmin 8917   NNcn 9626   2c2 9675   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109    mod cmo 10851   ^cexp 10982    || cdivides 12405   Xrm crmx 26151   Yrm crmy 26152
This theorem is referenced by:  expdiophlem1  26280
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-numer 12680  df-denom 12681  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-squarenn 26092  df-pell1qr 26093  df-pell14qr 26094  df-pell1234qr 26095  df-pellfund 26096  df-rmx 26153  df-rmy 26154
  Copyright terms: Public domain W3C validator