HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbval Unicode version

Theorem kbval 22495
Description: The value of the operator resulting from the outer product  |  A >.  <. B  | of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
kbval  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( C  .ih  B )  .h  A ) )

Proof of Theorem kbval
StepHypRef Expression
1 kbfval 22493 . . . 4  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  ketbra  B )  =  ( x  e. 
~H  |->  ( ( x 
.ih  B )  .h  A ) ) )
21fveq1d 5460 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  ketbra  B ) `  C )  =  ( ( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) ) `
 C ) )
3 oveq1 5799 . . . . 5  |-  ( x  =  C  ->  (
x  .ih  B )  =  ( C  .ih  B ) )
43oveq1d 5807 . . . 4  |-  ( x  =  C  ->  (
( x  .ih  B
)  .h  A )  =  ( ( C 
.ih  B )  .h  A ) )
5 eqid 2258 . . . 4  |-  ( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) )  =  ( x  e. 
~H  |->  ( ( x 
.ih  B )  .h  A ) )
6 ovex 5817 . . . 4  |-  ( ( C  .ih  B )  .h  A )  e. 
_V
74, 5, 6fvmpt 5536 . . 3  |-  ( C  e.  ~H  ->  (
( x  e.  ~H  |->  ( ( x  .ih  B )  .h  A ) ) `  C )  =  ( ( C 
.ih  B )  .h  A ) )
82, 7sylan9eq 2310 . 2  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  C  e.  ~H )  ->  ( ( A 
ketbra  B ) `  C
)  =  ( ( C  .ih  B )  .h  A ) )
983impa 1151 1  |-  ( ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  (
( A  ketbra  B ) `
 C )  =  ( ( C  .ih  B )  .h  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   ~Hchil 21460    .h csm 21462    .ih csp 21463    ketbra ck 21498
This theorem is referenced by:  kbpj  22497  kbass1  22657  kbass2  22658  kbass5  22661  kbass6  22662
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484  ax-hilex 21540
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-kb 22392
  Copyright terms: Public domain W3C validator