MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latabs1 Unicode version

Theorem latabs1 14504
Description: Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 23006 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latabs1.b  |-  B  =  ( Base `  K
)
latabs1.j  |-  .\/  =  ( join `  K )
latabs1.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latabs1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  ( X  ./\  Y ) )  =  X )

Proof of Theorem latabs1
StepHypRef Expression
1 latabs1.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2435 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 latabs1.m . . 3  |-  ./\  =  ( meet `  K )
41, 2, 3latmle1 14493 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
51, 3latmcl 14468 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
6 latabs1.j . . . . 5  |-  .\/  =  ( join `  K )
71, 2, 6latleeqj2 14481 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  ./\  Y )  e.  B  /\  X  e.  B )  ->  (
( X  ./\  Y
) ( le `  K ) X  <->  ( X  .\/  ( X  ./\  Y
) )  =  X ) )
873com23 1159 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  ./\  Y )  e.  B )  -> 
( ( X  ./\  Y ) ( le `  K ) X  <->  ( X  .\/  ( X  ./\  Y
) )  =  X ) )
95, 8syld3an3 1229 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) ( le `  K ) X  <->  ( X  .\/  ( X  ./\  Y
) )  =  X ) )
104, 9mpbid 202 1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  ( X  ./\  Y ) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   Latclat 14462
This theorem is referenced by:  latdisdlem  14603  cvrexchlem  30055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-lat 14463
  Copyright terms: Public domain W3C validator