MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj32 Unicode version

Theorem latj32 14485
Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
latjass.b  |-  B  =  ( Base `  K
)
latjass.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latj32  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( ( X 
.\/  Z )  .\/  Y ) )

Proof of Theorem latj32
StepHypRef Expression
1 latjass.b . . . . 5  |-  B  =  ( Base `  K
)
2 latjass.j . . . . 5  |-  .\/  =  ( join `  K )
31, 2latjcom 14447 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  =  ( Z 
.\/  Y ) )
433adant3r1 1162 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  =  ( Z  .\/  Y
) )
54oveq2d 6060 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  .\/  Z ) )  =  ( X  .\/  ( Z 
.\/  Y ) ) )
61, 2latjass 14483 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( X  .\/  ( Y  .\/  Z ) ) )
7 simpr1 963 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
8 simpr3 965 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
9 simpr2 964 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
107, 8, 93jca 1134 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)
111, 2latjass 14483 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .\/  Z
)  .\/  Y )  =  ( X  .\/  ( Z  .\/  Y ) ) )
1210, 11syldan 457 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Z
)  .\/  Y )  =  ( X  .\/  ( Z  .\/  Y ) ) )
135, 6, 123eqtr4d 2450 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( ( X 
.\/  Z )  .\/  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5417  (class class class)co 6044   Basecbs 13428   joincjn 14360   Latclat 14433
This theorem is referenced by:  latj13  14486  latjrot  14488  hlatj32  29858  4atexlemc  30555  cdleme9  30739  cdleme22e  30830  cdleme22eALTN  30831  cdlemkid1  31408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-lub 14390  df-join 14392  df-lat 14434
  Copyright terms: Public domain W3C validator