MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjass Unicode version

Theorem latjass 14197
Description: Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 22108 analog.) (Contributed by NM, 17-Sep-2011.)
Hypotheses
Ref Expression
latjass.b  |-  B  =  ( Base `  K
)
latjass.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjass  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( X  .\/  ( Y  .\/  Z ) ) )

Proof of Theorem latjass
StepHypRef Expression
1 latjass.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2284 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 simpl 443 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
4 latjass.j . . . . 5  |-  .\/  =  ( join `  K )
51, 4latjcl 14152 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
653adant3r3 1162 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Y )  e.  B )
7 simpr3 963 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
81, 4latjcl 14152 . . 3  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  .\/  Z )  e.  B )
93, 6, 7, 8syl3anc 1182 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  e.  B )
10 simpr1 961 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
111, 4latjcl 14152 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
12113adant3r1 1160 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  e.  B )
131, 4latjcl 14152 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( X  .\/  ( Y  .\/  Z ) )  e.  B )
143, 10, 12, 13syl3anc 1182 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  .\/  Z ) )  e.  B
)
151, 2, 4latlej1 14162 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  ->  X ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) )
163, 10, 12, 15syl3anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X
( le `  K
) ( X  .\/  ( Y  .\/  Z ) ) )
17 simpr2 962 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
181, 2, 4latlej1 14162 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  Y ( le `  K ) ( Y 
.\/  Z ) )
19183adant3r1 1160 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y
( le `  K
) ( Y  .\/  Z ) )
201, 2, 4latlej2 14163 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( Y  .\/  Z )  e.  B )  -> 
( Y  .\/  Z
) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) )
213, 10, 12, 20syl3anc 1182 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z ) ( le `  K ) ( X  .\/  ( Y  .\/  Z ) ) )
221, 2, 3, 17, 12, 14, 19, 21lattrd 14160 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y
( le `  K
) ( X  .\/  ( Y  .\/  Z ) ) )
231, 2, 4latjle12 14164 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  ( X  .\/  ( Y  .\/  Z ) )  e.  B ) )  ->  ( ( X ( le `  K
) ( X  .\/  ( Y  .\/  Z ) )  /\  Y ( le `  K ) ( X  .\/  ( Y  .\/  Z ) ) )  <->  ( X  .\/  Y ) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) ) )
243, 10, 17, 14, 23syl13anc 1184 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X ( le
`  K ) ( X  .\/  ( Y 
.\/  Z ) )  /\  Y ( le
`  K ) ( X  .\/  ( Y 
.\/  Z ) ) )  <->  ( X  .\/  Y ) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) ) )
2516, 22, 24mpbi2and 887 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Y ) ( le `  K ) ( X  .\/  ( Y  .\/  Z ) ) )
261, 2, 4latlej2 14163 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  Z ( le `  K ) ( Y 
.\/  Z ) )
27263adant3r1 1160 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z
( le `  K
) ( Y  .\/  Z ) )
281, 2, 3, 7, 12, 14, 27, 21lattrd 14160 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z
( le `  K
) ( X  .\/  ( Y  .\/  Z ) ) )
291, 2, 4latjle12 14164 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  e.  B  /\  Z  e.  B  /\  ( X  .\/  ( Y 
.\/  Z ) )  e.  B ) )  ->  ( ( ( X  .\/  Y ) ( le `  K
) ( X  .\/  ( Y  .\/  Z ) )  /\  Z ( le `  K ) ( X  .\/  ( Y  .\/  Z ) ) )  <->  ( ( X 
.\/  Y )  .\/  Z ) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) ) )
303, 6, 7, 14, 29syl13anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .\/  Y ) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) )  /\  Z
( le `  K
) ( X  .\/  ( Y  .\/  Z ) ) )  <->  ( ( X  .\/  Y )  .\/  Z ) ( le `  K ) ( X 
.\/  ( Y  .\/  Z ) ) ) )
3125, 28, 30mpbi2and 887 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )
( le `  K
) ( X  .\/  ( Y  .\/  Z ) ) )
321, 2, 4latlej1 14162 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
33323adant3r3 1162 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X
( le `  K
) ( X  .\/  Y ) )
341, 2, 4latlej1 14162 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Y ) ( le `  K ) ( ( X  .\/  Y )  .\/  Z ) )
353, 6, 7, 34syl3anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Y ) ( le `  K ) ( ( X  .\/  Y )  .\/  Z ) )
361, 2, 3, 10, 6, 9, 33, 35lattrd 14160 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X
( le `  K
) ( ( X 
.\/  Y )  .\/  Z ) )
371, 2, 4latlej2 14163 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  Y ( le `  K ) ( X 
.\/  Y ) )
38373adant3r3 1162 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y
( le `  K
) ( X  .\/  Y ) )
391, 2, 3, 17, 6, 9, 38, 35lattrd 14160 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y
( le `  K
) ( ( X 
.\/  Y )  .\/  Z ) )
401, 2, 4latlej2 14163 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  Z
( le `  K
) ( ( X 
.\/  Y )  .\/  Z ) )
413, 6, 7, 40syl3anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z
( le `  K
) ( ( X 
.\/  Y )  .\/  Z ) )
421, 2, 4latjle12 14164 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Y  e.  B  /\  Z  e.  B  /\  ( ( X  .\/  Y )  .\/  Z )  e.  B ) )  ->  ( ( Y ( le `  K
) ( ( X 
.\/  Y )  .\/  Z )  /\  Z ( le `  K ) ( ( X  .\/  Y )  .\/  Z ) )  <->  ( Y  .\/  Z ) ( le `  K ) ( ( X  .\/  Y ) 
.\/  Z ) ) )
433, 17, 7, 9, 42syl13anc 1184 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( Y ( le
`  K ) ( ( X  .\/  Y
)  .\/  Z )  /\  Z ( le `  K ) ( ( X  .\/  Y ) 
.\/  Z ) )  <-> 
( Y  .\/  Z
) ( le `  K ) ( ( X  .\/  Y ) 
.\/  Z ) ) )
4439, 41, 43mpbi2and 887 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z ) ( le `  K ) ( ( X  .\/  Y )  .\/  Z ) )
451, 2, 4latjle12 14164 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  ( Y  .\/  Z
)  e.  B  /\  ( ( X  .\/  Y )  .\/  Z )  e.  B ) )  ->  ( ( X ( le `  K
) ( ( X 
.\/  Y )  .\/  Z )  /\  ( Y 
.\/  Z ) ( le `  K ) ( ( X  .\/  Y )  .\/  Z ) )  <->  ( X  .\/  ( Y  .\/  Z ) ) ( le `  K ) ( ( X  .\/  Y ) 
.\/  Z ) ) )
463, 10, 12, 9, 45syl13anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X ( le
`  K ) ( ( X  .\/  Y
)  .\/  Z )  /\  ( Y  .\/  Z
) ( le `  K ) ( ( X  .\/  Y ) 
.\/  Z ) )  <-> 
( X  .\/  ( Y  .\/  Z ) ) ( le `  K
) ( ( X 
.\/  Y )  .\/  Z ) ) )
4736, 44, 46mpbi2and 887 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  .\/  Z ) ) ( le
`  K ) ( ( X  .\/  Y
)  .\/  Z )
)
481, 2, 3, 9, 14, 31, 47latasymd 14159 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( X  .\/  ( Y  .\/  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   joincjn 14074   Latclat 14147
This theorem is referenced by:  latj12  14198  latj32  14199  latj4  14203  latmass  14287  latmassOLD  28698  hlatjass  28838  cvrexchlem  28887  cvrat3  28910  2atmat  29029  4atlem3  29064  4atlem3a  29065  4atlem4a  29067  4atlem4d  29070  4at2  29082  2lplnja  29087  pmapjlln1  29323  dalawlem3  29341  dalawlem12  29350  cdleme30a  29846  trlcolem  30194  cdlemh1  30283  cdlemkid1  30390  doca2N  30595  djajN  30606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-lub 14104  df-join 14106  df-lat 14148
  Copyright terms: Public domain W3C validator