MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej2 Unicode version

Theorem latjlej2 14174
Description: Add join to both sides of a lattice ordering. (chlej2i 22055 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjlej2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )

Proof of Theorem latjlej2
StepHypRef Expression
1 latlej.b . . 3  |-  B  =  ( Base `  K
)
2 latlej.l . . 3  |-  .<_  =  ( le `  K )
3 latlej.j . . 3  |-  .\/  =  ( join `  K )
41, 2, 3latjlej1 14173 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
51, 3latjcom 14167 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Z
)  =  ( Z 
.\/  X ) )
653adant3r2 1161 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Z )  =  ( Z  .\/  X
) )
71, 3latjcom 14167 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  =  ( Z 
.\/  Y ) )
873adant3r1 1160 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  =  ( Z  .\/  Y
) )
96, 8breq12d 4038 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Z
)  .<_  ( Y  .\/  Z )  <->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
104, 9sylibd 205 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   joincjn 14080   Latclat 14153
This theorem is referenced by:  latjlej12  14175  cvrat3  29704  2llnjaN  29828  2lplnja  29881  dalawlem3  30135  dalawlem6  30138  dalawlem11  30143  lhpj1  30284  cdleme1  30489  cdleme9  30515  cdleme11g  30527  cdleme28a  30632  cdleme30a  30640  cdleme32c  30705  cdlemi1  31080  cdlemk11  31111  cdlemk11u  31133  cdlemk51  31215  cdlemm10N  31381  cdlemn10  31469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-lub 14110  df-join 14112  df-lat 14154
  Copyright terms: Public domain W3C validator