MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Unicode version

Theorem latleeqm1 14187
Description: Less-than-or-equal-to in terms of meet. (df-ss 3168 analog.) (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b  |-  B  =  ( Base `  K
)
latmle.l  |-  .<_  =  ( le `  K )
latmle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latleeqm1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( X  ./\ 
Y )  =  X ) )

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7  |-  B  =  ( Base `  K
)
2 latmle.l . . . . . . 7  |-  .<_  =  ( le `  K )
31, 2latref 14161 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  X  .<_  X )
433adant3 975 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X  .<_  X )
54biantrurd 494 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( X  .<_  X  /\  X  .<_  Y ) ) )
6 simp1 955 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
7 simp2 956 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
8 simp3 957 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
9 latmle.m . . . . . 6  |-  ./\  =  ( meet `  K )
101, 2, 9latlem12 14186 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  .<_  X  /\  X  .<_  Y )  <->  X  .<_  ( X  ./\  Y )
) )
116, 7, 7, 8, 10syl13anc 1184 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  X  /\  X  .<_  Y )  <-> 
X  .<_  ( X  ./\  Y ) ) )
125, 11bitrd 244 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  X  .<_  ( X  ./\  Y )
) )
131, 2, 9latmle1 14184 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  X )
1413biantrurd 494 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  ( X 
./\  Y )  <->  ( ( X  ./\  Y )  .<_  X  /\  X  .<_  ( X 
./\  Y ) ) ) )
1512, 14bitrd 244 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( ( X  ./\  Y )  .<_  X  /\  X  .<_  ( X 
./\  Y ) ) ) )
16 latpos 14157 . . . 4  |-  ( K  e.  Lat  ->  K  e.  Poset )
17163ad2ant1 976 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Poset )
181, 9latmcl 14159 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
191, 2posasymb 14088 . . 3  |-  ( ( K  e.  Poset  /\  ( X  ./\  Y )  e.  B  /\  X  e.  B )  ->  (
( ( X  ./\  Y )  .<_  X  /\  X  .<_  ( X  ./\  Y ) )  <->  ( X  ./\ 
Y )  =  X ) )
2017, 18, 7, 19syl3anc 1182 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( X 
./\  Y )  .<_  X  /\  X  .<_  ( X 
./\  Y ) )  <-> 
( X  ./\  Y
)  =  X ) )
2115, 20bitrd 244 1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( X  ./\ 
Y )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   Posetcpo 14076   meetcmee 14081   Latclat 14153
This theorem is referenced by:  latleeqm2  14188  latnlemlt  14192  latabs2  14196  atnle  29580  2llnmat  29786  llnmlplnN  29801  dalem25  29960  2lnat  30046  lhpm0atN  30291  lhpmatb  30293  cdleme1  30489  cdleme5  30502  cdleme20d  30574  cdleme22e  30606  cdleme22eALTN  30607  cdleme23b  30612  cdleme32e  30707  doca2N  31389  djajN  31400  dihglblem5aN  31555  dihmeetbclemN  31567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-glb 14111  df-meet 14113  df-lat 14154
  Copyright terms: Public domain W3C validator