Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexch Unicode version

Theorem lcvexch 29676
Description: Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 23860 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s  |-  S  =  ( LSubSp `  W )
lcvexch.p  |-  .(+)  =  (
LSSum `  W )
lcvexch.c  |-  C  =  (  <oLL  `  W )
lcvexch.w  |-  ( ph  ->  W  e.  LMod )
lcvexch.t  |-  ( ph  ->  T  e.  S )
lcvexch.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lcvexch  |-  ( ph  ->  ( ( T  i^i  U ) C U  <->  T C
( T  .(+)  U ) ) )

Proof of Theorem lcvexch
StepHypRef Expression
1 lcvexch.s . . 3  |-  S  =  ( LSubSp `  W )
2 lcvexch.p . . 3  |-  .(+)  =  (
LSSum `  W )
3 lcvexch.c . . 3  |-  C  =  (  <oLL  `  W )
4 lcvexch.w . . . 4  |-  ( ph  ->  W  e.  LMod )
54adantr 452 . . 3  |-  ( (
ph  /\  ( T  i^i  U ) C U )  ->  W  e.  LMod )
6 lcvexch.t . . . 4  |-  ( ph  ->  T  e.  S )
76adantr 452 . . 3  |-  ( (
ph  /\  ( T  i^i  U ) C U )  ->  T  e.  S )
8 lcvexch.u . . . 4  |-  ( ph  ->  U  e.  S )
98adantr 452 . . 3  |-  ( (
ph  /\  ( T  i^i  U ) C U )  ->  U  e.  S )
10 simpr 448 . . 3  |-  ( (
ph  /\  ( T  i^i  U ) C U )  ->  ( T  i^i  U ) C U )
111, 2, 3, 5, 7, 9, 10lcvexchlem5 29675 . 2  |-  ( (
ph  /\  ( T  i^i  U ) C U )  ->  T C
( T  .(+)  U ) )
124adantr 452 . . 3  |-  ( (
ph  /\  T C
( T  .(+)  U ) )  ->  W  e.  LMod )
136adantr 452 . . 3  |-  ( (
ph  /\  T C
( T  .(+)  U ) )  ->  T  e.  S )
148adantr 452 . . 3  |-  ( (
ph  /\  T C
( T  .(+)  U ) )  ->  U  e.  S )
15 simpr 448 . . 3  |-  ( (
ph  /\  T C
( T  .(+)  U ) )  ->  T C
( T  .(+)  U ) )
161, 2, 3, 12, 13, 14, 15lcvexchlem4 29674 . 2  |-  ( (
ph  /\  T C
( T  .(+)  U ) )  ->  ( T  i^i  U ) C U )
1711, 16impbida 806 1  |-  ( ph  ->  ( ( T  i^i  U ) C U  <->  T C
( T  .(+)  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    i^i cin 3311   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   LSSumclsm 15256   LModclmod 15938   LSubSpclss 15996    <oLL clcv 29655
This theorem is referenced by:  lcvp  29677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-0g 13715  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-grp 14800  df-minusg 14801  df-sbg 14802  df-subg 14929  df-cntz 15104  df-oppg 15130  df-lsm 15258  df-cmn 15402  df-abl 15403  df-mgp 15637  df-rng 15651  df-ur 15653  df-lmod 15940  df-lss 15997  df-lcv 29656
  Copyright terms: Public domain W3C validator