Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Unicode version

Theorem ldualset 29384
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v  |-  V  =  ( Base `  W
)
ldualset.a  |-  .+  =  ( +g  `  R )
ldualset.p  |-  .+b  =  (  o F  .+  |`  ( F  X.  F ) )
ldualset.f  |-  F  =  (LFnl `  W )
ldualset.d  |-  D  =  (LDual `  W )
ldualset.r  |-  R  =  (Scalar `  W )
ldualset.k  |-  K  =  ( Base `  R
)
ldualset.t  |-  .x.  =  ( .r `  R )
ldualset.o  |-  O  =  (oppr
`  R )
ldualset.s  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F 
.x.  ( V  X.  { k } ) ) )
ldualset.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
ldualset  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Distinct variable group:    f, k, W
Allowed substitution hints:    ph( f, k)    D( f, k)    .+ ( f, k)    .+b ( f, k)    R( f, k)    .xb ( f, k)    .x. ( f,
k)    F( f, k)    K( f, k)    O( f, k)    V( f, k)    X( f, k)

Proof of Theorem ldualset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2  |-  ( ph  ->  W  e.  X )
2 elex 2872 . 2  |-  ( W  e.  X  ->  W  e.  _V )
3 ldualset.d . . 3  |-  D  =  (LDual `  W )
4 fveq2 5608 . . . . . . . 8  |-  ( w  =  W  ->  (LFnl `  w )  =  (LFnl `  W ) )
5 ldualset.f . . . . . . . 8  |-  F  =  (LFnl `  W )
64, 5syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (LFnl `  w )  =  F )
76opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  (LFnl `  w ) >.  =  <. ( Base `  ndx ) ,  F >. )
8 fveq2 5608 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
9 ldualset.r . . . . . . . . . . . . 13  |-  R  =  (Scalar `  W )
108, 9syl6eqr 2408 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (Scalar `  w )  =  R )
1110fveq2d 5612 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  ( +g  `  R ) )
12 ldualset.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  R )
1311, 12syl6eqr 2408 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  .+  )
14 ofeq 6167 . . . . . . . . . 10  |-  ( ( +g  `  (Scalar `  w ) )  = 
.+  ->  o F ( +g  `  (Scalar `  w ) )  =  o F  .+  )
1513, 14syl 15 . . . . . . . . 9  |-  ( w  =  W  ->  o F ( +g  `  (Scalar `  w ) )  =  o F  .+  )
166, 6xpeq12d 4796 . . . . . . . . 9  |-  ( w  =  W  ->  (
(LFnl `  w )  X.  (LFnl `  w )
)  =  ( F  X.  F ) )
1715, 16reseq12d 5038 . . . . . . . 8  |-  ( w  =  W  ->  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) )  =  (  o F  .+  |`  ( F  X.  F ) ) )
18 ldualset.p . . . . . . . 8  |-  .+b  =  (  o F  .+  |`  ( F  X.  F ) )
1917, 18syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) )  =  .+b  )
2019opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
2110fveq2d 5612 . . . . . . . 8  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  (oppr
`  R ) )
22 ldualset.o . . . . . . . 8  |-  O  =  (oppr
`  R )
2321, 22syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  O )
2423opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  (oppr `  (Scalar `  w ) )
>.  =  <. (Scalar `  ndx ) ,  O >. )
257, 20, 24tpeq123d 3797 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  (LFnl `  w ) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  =  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. } )
2610fveq2d 5612 . . . . . . . . . 10  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  R )
)
27 ldualset.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
2826, 27syl6eqr 2408 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
2910fveq2d 5612 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  ( .r `  R ) )
30 ldualset.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
3129, 30syl6eqr 2408 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  .x.  )
32 ofeq 6167 . . . . . . . . . . 11  |-  ( ( .r `  (Scalar `  w ) )  = 
.x.  ->  o F ( .r `  (Scalar `  w ) )  =  o F  .x.  )
3331, 32syl 15 . . . . . . . . . 10  |-  ( w  =  W  ->  o F ( .r `  (Scalar `  w ) )  =  o F  .x.  )
34 eqidd 2359 . . . . . . . . . 10  |-  ( w  =  W  ->  f  =  f )
35 fveq2 5608 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
36 ldualset.v . . . . . . . . . . . 12  |-  V  =  ( Base `  W
)
3735, 36syl6eqr 2408 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( Base `  w )  =  V )
3837xpeq1d 4794 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( Base `  w )  X.  { k } )  =  ( V  X.  { k } ) )
3933, 34, 38oveq123d 5966 . . . . . . . . 9  |-  ( w  =  W  ->  (
f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) )  =  ( f  o F 
.x.  ( V  X.  { k } ) ) )
4028, 6, 39mpt2eq123dv 5997 . . . . . . . 8  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F  .x.  ( V  X.  { k } ) ) ) )
41 ldualset.s . . . . . . . 8  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F 
.x.  ( V  X.  { k } ) ) )
4240, 41syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  .xb  )
4342opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( k  e.  (
Base `  (Scalar `  w
) ) ,  f  e.  (LFnl `  w
)  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )
>.  =  <. ( .s
`  ndx ) ,  .xb  >.
)
4443sneqd 3729 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. }  =  { <. ( .s `  ndx ) ,  .xb  >. } )
4525, 44uneq12d 3406 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
46 df-ldual 29383 . . . 4  |- LDual  =  ( w  e.  _V  |->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } ) )
47 tpex 4601 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  e.  _V
48 snex 4297 . . . . 5  |-  { <. ( .s `  ndx ) ,  .xb  >. }  e.  _V
4947, 48unex 4600 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } )  e. 
_V
5045, 46, 49fvmpt 5685 . . 3  |-  ( W  e.  _V  ->  (LDual `  W )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
513, 50syl5eq 2402 . 2  |-  ( W  e.  _V  ->  D  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
521, 2, 513syl 18 1  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   _Vcvv 2864    u. cun 3226   {csn 3716   {ctp 3718   <.cop 3719    X. cxp 4769    |` cres 4773   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947    o Fcof 6163   ndxcnx 13242   Basecbs 13245   +g cplusg 13305   .rcmulr 13306  Scalarcsca 13308   .scvsca 13309  opprcoppr 15503  LFnlclfn 29316  LDualcld 29382
This theorem is referenced by:  ldualvbase  29385  ldualfvadd  29387  ldualsca  29391  ldualfvs  29395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-res 4783  df-iota 5301  df-fun 5339  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-ldual 29383
  Copyright terms: Public domain W3C validator