Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Unicode version

Theorem ldualset 29608
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v  |-  V  =  ( Base `  W
)
ldualset.a  |-  .+  =  ( +g  `  R )
ldualset.p  |-  .+b  =  (  o F  .+  |`  ( F  X.  F ) )
ldualset.f  |-  F  =  (LFnl `  W )
ldualset.d  |-  D  =  (LDual `  W )
ldualset.r  |-  R  =  (Scalar `  W )
ldualset.k  |-  K  =  ( Base `  R
)
ldualset.t  |-  .x.  =  ( .r `  R )
ldualset.o  |-  O  =  (oppr
`  R )
ldualset.s  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F 
.x.  ( V  X.  { k } ) ) )
ldualset.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
ldualset  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Distinct variable group:    f, k, W
Allowed substitution hints:    ph( f, k)    D( f, k)    .+ ( f, k)    .+b ( f, k)    R( f, k)    .xb ( f, k)    .x. ( f,
k)    F( f, k)    K( f, k)    O( f, k)    V( f, k)    X( f, k)

Proof of Theorem ldualset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2  |-  ( ph  ->  W  e.  X )
2 elex 2924 . 2  |-  ( W  e.  X  ->  W  e.  _V )
3 ldualset.d . . 3  |-  D  =  (LDual `  W )
4 fveq2 5687 . . . . . . . 8  |-  ( w  =  W  ->  (LFnl `  w )  =  (LFnl `  W ) )
5 ldualset.f . . . . . . . 8  |-  F  =  (LFnl `  W )
64, 5syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  (LFnl `  w )  =  F )
76opeq2d 3951 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  (LFnl `  w ) >.  =  <. ( Base `  ndx ) ,  F >. )
8 fveq2 5687 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
9 ldualset.r . . . . . . . . . . . . 13  |-  R  =  (Scalar `  W )
108, 9syl6eqr 2454 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (Scalar `  w )  =  R )
1110fveq2d 5691 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  ( +g  `  R ) )
12 ldualset.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  R )
1311, 12syl6eqr 2454 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  .+  )
14 ofeq 6266 . . . . . . . . . 10  |-  ( ( +g  `  (Scalar `  w ) )  = 
.+  ->  o F ( +g  `  (Scalar `  w ) )  =  o F  .+  )
1513, 14syl 16 . . . . . . . . 9  |-  ( w  =  W  ->  o F ( +g  `  (Scalar `  w ) )  =  o F  .+  )
166, 6xpeq12d 4862 . . . . . . . . 9  |-  ( w  =  W  ->  (
(LFnl `  w )  X.  (LFnl `  w )
)  =  ( F  X.  F ) )
1715, 16reseq12d 5106 . . . . . . . 8  |-  ( w  =  W  ->  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) )  =  (  o F  .+  |`  ( F  X.  F ) ) )
18 ldualset.p . . . . . . . 8  |-  .+b  =  (  o F  .+  |`  ( F  X.  F ) )
1917, 18syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) )  =  .+b  )
2019opeq2d 3951 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
2110fveq2d 5691 . . . . . . . 8  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  (oppr
`  R ) )
22 ldualset.o . . . . . . . 8  |-  O  =  (oppr
`  R )
2321, 22syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  O )
2423opeq2d 3951 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  (oppr `  (Scalar `  w ) )
>.  =  <. (Scalar `  ndx ) ,  O >. )
257, 20, 24tpeq123d 3858 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  (LFnl `  w ) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  =  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. } )
2610fveq2d 5691 . . . . . . . . . 10  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  R )
)
27 ldualset.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
2826, 27syl6eqr 2454 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
2910fveq2d 5691 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  ( .r `  R ) )
30 ldualset.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
3129, 30syl6eqr 2454 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  .x.  )
32 ofeq 6266 . . . . . . . . . . 11  |-  ( ( .r `  (Scalar `  w ) )  = 
.x.  ->  o F ( .r `  (Scalar `  w ) )  =  o F  .x.  )
3331, 32syl 16 . . . . . . . . . 10  |-  ( w  =  W  ->  o F ( .r `  (Scalar `  w ) )  =  o F  .x.  )
34 eqidd 2405 . . . . . . . . . 10  |-  ( w  =  W  ->  f  =  f )
35 fveq2 5687 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
36 ldualset.v . . . . . . . . . . . 12  |-  V  =  ( Base `  W
)
3735, 36syl6eqr 2454 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( Base `  w )  =  V )
3837xpeq1d 4860 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( Base `  w )  X.  { k } )  =  ( V  X.  { k } ) )
3933, 34, 38oveq123d 6061 . . . . . . . . 9  |-  ( w  =  W  ->  (
f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) )  =  ( f  o F 
.x.  ( V  X.  { k } ) ) )
4028, 6, 39mpt2eq123dv 6095 . . . . . . . 8  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F  .x.  ( V  X.  { k } ) ) ) )
41 ldualset.s . . . . . . . 8  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  o F 
.x.  ( V  X.  { k } ) ) )
4240, 41syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  .xb  )
4342opeq2d 3951 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( k  e.  (
Base `  (Scalar `  w
) ) ,  f  e.  (LFnl `  w
)  |->  ( f  o F ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )
>.  =  <. ( .s
`  ndx ) ,  .xb  >.
)
4443sneqd 3787 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. }  =  { <. ( .s `  ndx ) ,  .xb  >. } )
4525, 44uneq12d 3462 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
46 df-ldual 29607 . . . 4  |- LDual  =  ( w  e.  _V  |->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  o F ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  o F ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } ) )
47 tpex 4667 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  e.  _V
48 snex 4365 . . . . 5  |-  { <. ( .s `  ndx ) ,  .xb  >. }  e.  _V
4947, 48unex 4666 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } )  e. 
_V
5045, 46, 49fvmpt 5765 . . 3  |-  ( W  e.  _V  ->  (LDual `  W )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
513, 50syl5eq 2448 . 2  |-  ( W  e.  _V  ->  D  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
521, 2, 513syl 19 1  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2916    u. cun 3278   {csn 3774   {ctp 3776   <.cop 3777    X. cxp 4835    |` cres 4839   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042    o Fcof 6262   ndxcnx 13421   Basecbs 13424   +g cplusg 13484   .rcmulr 13485  Scalarcsca 13487   .scvsca 13488  opprcoppr 15682  LFnlclfn 29540  LDualcld 29606
This theorem is referenced by:  ldualvbase  29609  ldualfvadd  29611  ldualsca  29615  ldualfvs  29619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-res 4849  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-ldual 29607
  Copyright terms: Public domain W3C validator