MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Unicode version

Theorem lecasei 9016
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1  |-  ( ph  ->  A  e.  RR )
lecase.2  |-  ( ph  ->  B  e.  RR )
lecase.3  |-  ( (
ph  /\  A  <_  B )  ->  ps )
lecase.4  |-  ( (
ph  /\  B  <_  A )  ->  ps )
Assertion
Ref Expression
lecasei  |-  ( ph  ->  ps )

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2  |-  ( (
ph  /\  A  <_  B )  ->  ps )
2 lecase.4 . 2  |-  ( (
ph  /\  B  <_  A )  ->  ps )
3 lecase.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lecase.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letric 9011 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <_  A ) )
63, 4, 5syl2anc 642 . 2  |-  ( ph  ->  ( A  <_  B  \/  B  <_  A ) )
71, 2, 6mpjaodan 761 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    e. wcel 1710   class class class wbr 4104   RRcr 8826    <_ cle 8958
This theorem is referenced by:  wloglei  9395  nn2ge  9861  max0sub  10615  leabs  11880  max0add  11891  limsupgre  12051  1arithlem4  13070  mndodcong  14956  reconn  18436  dyaddisj  19055  volcn  19065  ditgcl  19312  ditgswap  19313  ditgsplit  19315  dvfsumlem3  19479  ftc2ditg  19497  coseq0negpitopi  19978  asinlem3  20278  atanlogaddlem  20320  atanlogadd  20321  ppiub  20555  dchrisum0  20781  pntrmax  20825  padicabv  20891  ntrivcvgmul  24531  nacsfix  26110  acongrep  26390  hbt  26657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-resscn 8884  ax-pre-lttri 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963
  Copyright terms: Public domain W3C validator