HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leopg Unicode version

Theorem leopg 22663
Description: Ordering relation for positive operators. Definition of positive operator ordering in [Kreyszig] p. 470. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leopg  |-  ( ( T  e.  A  /\  U  e.  B )  ->  ( T  <_op  U  <->  ( ( U  -op  T
)  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( U  -op  T ) `  x )  .ih  x
) ) ) )
Distinct variable groups:    x, A    x, B    x, T    x, U

Proof of Theorem leopg
StepHypRef Expression
1 oveq2 5800 . . . 4  |-  ( t  =  T  ->  (
u  -op  t )  =  ( u  -op  T ) )
21eleq1d 2324 . . 3  |-  ( t  =  T  ->  (
( u  -op  t
)  e.  HrmOp  <->  ( u  -op  T )  e.  HrmOp ) )
31fveq1d 5460 . . . . . 6  |-  ( t  =  T  ->  (
( u  -op  t
) `  x )  =  ( ( u  -op  T ) `  x ) )
43oveq1d 5807 . . . . 5  |-  ( t  =  T  ->  (
( ( u  -op  t ) `  x
)  .ih  x )  =  ( ( ( u  -op  T ) `
 x )  .ih  x ) )
54breq2d 4009 . . . 4  |-  ( t  =  T  ->  (
0  <_  ( (
( u  -op  t
) `  x )  .ih  x )  <->  0  <_  ( ( ( u  -op  T ) `  x ) 
.ih  x ) ) )
65ralbidv 2538 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  0  <_  ( ( ( u  -op  t ) `
 x )  .ih  x )  <->  A. x  e.  ~H  0  <_  (
( ( u  -op  T ) `  x ) 
.ih  x ) ) )
72, 6anbi12d 694 . 2  |-  ( t  =  T  ->  (
( ( u  -op  t )  e.  HrmOp  /\ 
A. x  e.  ~H  0  <_  ( ( ( u  -op  t ) `
 x )  .ih  x ) )  <->  ( (
u  -op  T )  e.  HrmOp  /\  A. x  e.  ~H  0  <_  (
( ( u  -op  T ) `  x ) 
.ih  x ) ) ) )
8 oveq1 5799 . . . 4  |-  ( u  =  U  ->  (
u  -op  T )  =  ( U  -op  T ) )
98eleq1d 2324 . . 3  |-  ( u  =  U  ->  (
( u  -op  T
)  e.  HrmOp  <->  ( U  -op  T )  e.  HrmOp ) )
108fveq1d 5460 . . . . . 6  |-  ( u  =  U  ->  (
( u  -op  T
) `  x )  =  ( ( U  -op  T ) `  x ) )
1110oveq1d 5807 . . . . 5  |-  ( u  =  U  ->  (
( ( u  -op  T ) `  x ) 
.ih  x )  =  ( ( ( U  -op  T ) `  x )  .ih  x
) )
1211breq2d 4009 . . . 4  |-  ( u  =  U  ->  (
0  <_  ( (
( u  -op  T
) `  x )  .ih  x )  <->  0  <_  ( ( ( U  -op  T ) `  x ) 
.ih  x ) ) )
1312ralbidv 2538 . . 3  |-  ( u  =  U  ->  ( A. x  e.  ~H  0  <_  ( ( ( u  -op  T ) `
 x )  .ih  x )  <->  A. x  e.  ~H  0  <_  (
( ( U  -op  T ) `  x ) 
.ih  x ) ) )
149, 13anbi12d 694 . 2  |-  ( u  =  U  ->  (
( ( u  -op  T )  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( u  -op  T ) `  x )  .ih  x
) )  <->  ( ( U  -op  T )  e. 
HrmOp  /\  A. x  e. 
~H  0  <_  (
( ( U  -op  T ) `  x ) 
.ih  x ) ) ) )
15 df-leop 22393 . 2  |-  <_op  =  { <. t ,  u >.  |  ( ( u  -op  t )  e. 
HrmOp  /\  A. x  e. 
~H  0  <_  (
( ( u  -op  t ) `  x
)  .ih  x )
) }
167, 14, 15brabg 4256 1  |-  ( ( T  e.  A  /\  U  e.  B )  ->  ( T  <_op  U  <->  ( ( U  -op  T
)  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( U  -op  T ) `  x )  .ih  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   0cc0 8705    <_ cle 8836   ~Hchil 21460    .ih csp 21463    -op chod 21481   HrmOpcho 21491    <_op cleo 21499
This theorem is referenced by:  leop  22664  leoprf2  22668
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fv 4689  df-ov 5795  df-leop 22393
  Copyright terms: Public domain W3C validator