MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letri3 Structured version   Unicode version

Theorem letri3 9152
Description: Trichotomy law. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 9150 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
2 ancom 438 . . 3  |-  ( ( -.  B  <  A  /\  -.  A  <  B
)  <->  ( -.  A  <  B  /\  -.  B  <  A ) )
31, 2syl6bbr 255 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  B  < 
A  /\  -.  A  <  B ) ) )
4 lenlt 9146 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 lenlt 9146 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
65ancoms 440 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
74, 6anbi12d 692 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  A
)  <->  ( -.  B  <  A  /\  -.  A  <  B ) ) )
83, 7bitr4d 248 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   RRcr 8981    < clt 9112    <_ cle 9113
This theorem is referenced by:  eqlelt  9154  eqlei  9175  eqlei2  9176  letri3i  9181  letri3d  9207  lesub0  9536  eqord1  9547  lbreu  9950  nnle1eq1  10020  nn0le0eq0  10242  nn0lt10b  10328  zextle  10335  uz11  10500  uzin  10510  uzwo  10531  uzwoOLD  10532  qsqueeze  10779  elfz1eq  11060  faclbnd4lem4  11579  sqeqd  11963  max0add  12107  fsum00  12569  reef11  12712  dvdseq  12889  nn0seqcvgd  13053  infpnlem1  13270  psrbaglesupp  16425  gzrngunit  16756  nmoeq0  18762  oprpiece1res2  18969  pcoval2  19033  minveclem7  19328  pjthlem1  19330  iblposlem  19675  dvferm  19864  dveq0  19876  dv11cn  19877  fta1blem  20083  dgrco  20185  aalioulem3  20243  logf1o2  20533  cxpsqrlem  20585  ang180lem3  20645  chpeq0  20984  chteq0  20985  lgsdir  21106  lgsabs1  21110  minvecolem7  22377  pjhthlem1  22885  pjnormssi  23663  hstles  23726  stge1i  23733  stle0i  23734  stlesi  23736  cdj3lem1  23929  derangen  24850  bfplem2  26523  bfp  26524  acongeq  27039  jm2.26lem3  27063  dvconstbi  27519  swrdccat3blem  28184
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118
  Copyright terms: Public domain W3C validator