MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Unicode version

Theorem leweon 7593
Description: Lexicographical order is a well-ordering of  On  X.  On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 7594, this order is not set-like, as the preimage of  <. 1o ,  (/) >. is the proper class  ( { (/) }  X.  On ). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
leweon  |-  L  We  ( On  X.  On )
Distinct variable group:    x, y
Allowed substitution hints:    L( x, y)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 4533 . 2  |-  _E  We  On
2 leweon.1 . . . 4  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
3 fvex 5458 . . . . . . . 8  |-  ( 1st `  y )  e.  _V
43epelc 4265 . . . . . . 7  |-  ( ( 1st `  x )  _E  ( 1st `  y
)  <->  ( 1st `  x
)  e.  ( 1st `  y ) )
5 fvex 5458 . . . . . . . . 9  |-  ( 2nd `  y )  e.  _V
65epelc 4265 . . . . . . . 8  |-  ( ( 2nd `  x )  _E  ( 2nd `  y
)  <->  ( 2nd `  x
)  e.  ( 2nd `  y ) )
76anbi2i 678 . . . . . . 7  |-  ( ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) )
84, 7orbi12i 509 . . . . . 6  |-  ( ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) )  <->  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) )
98anbi2i 678 . . . . 5  |-  ( ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) )  <->  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) )
109opabbii 4043 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
112, 10eqtr4i 2279 . . 3  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) ) ) }
1211wexp 6149 . 2  |-  ( (  _E  We  On  /\  _E  We  On )  ->  L  We  ( On  X.  On ) )
131, 1, 12mp2an 656 1  |-  L  We  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3983   {copab 4036    _E cep 4261    We wwe 4309   Oncon0 4350    X. cxp 4645   ` cfv 4659   1stc1st 6040   2ndc2nd 6041
This theorem is referenced by:  r0weon  7594
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fv 4675  df-1st 6042  df-2nd 6043
  Copyright terms: Public domain W3C validator