MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Unicode version

Theorem leweon 7882
Description: Lexicographical order is a well-ordering of  On  X.  On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 7883, this order is not set-like, as the preimage of  <. 1o ,  (/) >. is the proper class  ( { (/) }  X.  On ). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
leweon  |-  L  We  ( On  X.  On )
Distinct variable group:    x, y
Allowed substitution hints:    L( x, y)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 4755 . 2  |-  _E  We  On
2 leweon.1 . . . 4  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
3 fvex 5733 . . . . . . . 8  |-  ( 1st `  y )  e.  _V
43epelc 4488 . . . . . . 7  |-  ( ( 1st `  x )  _E  ( 1st `  y
)  <->  ( 1st `  x
)  e.  ( 1st `  y ) )
5 fvex 5733 . . . . . . . . 9  |-  ( 2nd `  y )  e.  _V
65epelc 4488 . . . . . . . 8  |-  ( ( 2nd `  x )  _E  ( 2nd `  y
)  <->  ( 2nd `  x
)  e.  ( 2nd `  y ) )
76anbi2i 676 . . . . . . 7  |-  ( ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) )
84, 7orbi12i 508 . . . . . 6  |-  ( ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) )  <->  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) )
98anbi2i 676 . . . . 5  |-  ( ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) )  <->  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) )
109opabbii 4264 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
112, 10eqtr4i 2458 . . 3  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) ) ) }
1211wexp 6451 . 2  |-  ( (  _E  We  On  /\  _E  We  On )  ->  L  We  ( On  X.  On ) )
131, 1, 12mp2an 654 1  |-  L  We  ( On  X.  On )
Colors of variables: wff set class
Syntax hints:    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   {copab 4257    _E cep 4484    We wwe 4532   Oncon0 4573    X. cxp 4867   ` cfv 5445   1stc1st 6338   2ndc2nd 6339
This theorem is referenced by:  r0weon  7883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fv 5453  df-1st 6340  df-2nd 6341
  Copyright terms: Public domain W3C validator