Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhe4.4ex1a Structured version   Unicode version

Theorem lhe4.4ex1a 27523
Description: Example of the Fundamental Theorem of Calculus, part two (ftc2 19928):  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x  =  -u ( 2  /  3
). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 19928 as simply the "Fundamental Theorem of Calculus", then ftc1 19926 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.)
Assertion
Ref Expression
lhe4.4ex1a  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )

Proof of Theorem lhe4.4ex1a
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 9090 . . . . 5  |-  1  e.  RR
21a1i 11 . . . 4  |-  (  T. 
->  1  e.  RR )
3 2re 10069 . . . . 5  |-  2  e.  RR
43a1i 11 . . . 4  |-  (  T. 
->  2  e.  RR )
5 1lt2 10142 . . . . . 6  |-  1  <  2
61, 3, 5ltleii 9196 . . . . 5  |-  1  <_  2
76a1i 11 . . . 4  |-  (  T. 
->  1  <_  2 )
8 reex 9081 . . . . . . . 8  |-  RR  e.  _V
98prid1 3912 . . . . . . 7  |-  RR  e.  { RR ,  CC }
109a1i 11 . . . . . 6  |-  (  T. 
->  RR  e.  { RR ,  CC } )
11 recn 9080 . . . . . . . . . 10  |-  ( y  e.  RR  ->  y  e.  CC )
12 3nn0 10239 . . . . . . . . . . 11  |-  3  e.  NN0
13 expcl 11399 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  3  e.  NN0 )  -> 
( y ^ 3 )  e.  CC )
1412, 13mpan2 653 . . . . . . . . . 10  |-  ( y  e.  CC  ->  (
y ^ 3 )  e.  CC )
1511, 14syl 16 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y ^ 3 )  e.  CC )
16 3cn 10072 . . . . . . . . . 10  |-  3  e.  CC
17 3ne0 10085 . . . . . . . . . 10  |-  3  =/=  0
18 divcl 9684 . . . . . . . . . 10  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
1916, 17, 18mp3an23 1271 . . . . . . . . 9  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  e.  CC )
2015, 19syl 16 . . . . . . . 8  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  e.  CC )
21 mulcl 9074 . . . . . . . . 9  |-  ( ( 3  e.  CC  /\  y  e.  CC )  ->  ( 3  x.  y
)  e.  CC )
2216, 11, 21sylancr 645 . . . . . . . 8  |-  ( y  e.  RR  ->  (
3  x.  y )  e.  CC )
2320, 22subcld 9411 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
2423adantl 453 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  e.  CC )
25 ovex 6106 . . . . . . 7  |-  ( ( y ^ 2 )  -  3 )  e. 
_V
2625a1i 11 . . . . . 6  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
2720adantl 453 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
( y ^ 3 )  /  3 )  e.  CC )
28 ovex 6106 . . . . . . . 8  |-  ( y ^ 2 )  e. 
_V
2928a1i 11 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 2 )  e.  _V )
30 divrec2 9695 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 3 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3116, 17, 30mp3an23 1271 . . . . . . . . . . . 12  |-  ( ( y ^ 3 )  e.  CC  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3215, 31syl 16 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3332mpteq2ia 4291 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) )
3433oveq2i 6092 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( RR  _D  ( y  e.  RR  |->  ( ( 1  / 
3 )  x.  (
y ^ 3 ) ) ) )
3515adantl 453 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
y ^ 3 )  e.  CC )
36 ovex 6106 . . . . . . . . . . . 12  |-  ( 3  x.  ( y ^
2 ) )  e. 
_V
3736a1i 11 . . . . . . . . . . 11  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  ( y ^ 2 ) )  e.  _V )
38 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( y  e.  CC  |->  ( y ^ 3 ) )  =  ( y  e.  CC  |->  ( y ^
3 ) )
3938, 14fmpti 5892 . . . . . . . . . . . . . 14  |-  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC
40 ssid 3367 . . . . . . . . . . . . . 14  |-  CC  C_  CC
41 ax-resscn 9047 . . . . . . . . . . . . . . 15  |-  RR  C_  CC
42 3nn 10134 . . . . . . . . . . . . . . . . . 18  |-  3  e.  NN
43 dvexp 19839 . . . . . . . . . . . . . . . . . 18  |-  ( 3  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) ) )
4442, 43ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ (
3  -  1 ) ) ) )
45 3m1e2 10096 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  -  1 )  =  2
4645oveq2i 6092 . . . . . . . . . . . . . . . . . . 19  |-  ( y ^ ( 3  -  1 ) )  =  ( y ^ 2 )
4746oveq2i 6092 . . . . . . . . . . . . . . . . . 18  |-  ( 3  x.  ( y ^
( 3  -  1 ) ) )  =  ( 3  x.  (
y ^ 2 ) )
4847mpteq2i 4292 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  |->  ( 3  x.  ( y ^
( 3  -  1 ) ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
4944, 48eqtri 2456 . . . . . . . . . . . . . . . 16  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )
5036, 49dmmpti 5574 . . . . . . . . . . . . . . 15  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( y ^
3 ) ) )  =  CC
5141, 50sseqtr4i 3381 . . . . . . . . . . . . . 14  |-  RR  C_  dom  ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )
52 dvres3 19800 . . . . . . . . . . . . . 14  |-  ( ( ( RR  e.  { RR ,  CC }  /\  ( y  e.  CC  |->  ( y ^ 3 ) ) : CC --> CC )  /\  ( CC  C_  CC  /\  RR  C_ 
dom  ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) ) ) )  ->  ( RR  _D  ( ( y  e.  CC  |->  ( y ^
3 ) )  |`  RR ) )  =  ( ( CC  _D  (
y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR ) )
539, 39, 40, 51, 52mp4an 655 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )
54 resmpt 5191 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) ) )
5541, 54ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR )  =  ( y  e.  RR  |->  ( y ^
3 ) )
5655oveq2i 6092 . . . . . . . . . . . . 13  |-  ( RR 
_D  ( ( y  e.  CC  |->  ( y ^ 3 ) )  |`  RR ) )  =  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )
5749reseq1i 5142 . . . . . . . . . . . . . 14  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( ( y  e.  CC  |->  ( 3  x.  ( y ^
2 ) ) )  |`  RR )
58 resmpt 5191 . . . . . . . . . . . . . . 15  |-  ( RR  C_  CC  ->  ( (
y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
5941, 58ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  |->  ( 3  x.  ( y ^ 2 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6057, 59eqtri 2456 . . . . . . . . . . . . 13  |-  ( ( CC  _D  ( y  e.  CC  |->  ( y ^ 3 ) ) )  |`  RR )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6153, 56, 603eqtr3i 2464 . . . . . . . . . . . 12  |-  ( RR 
_D  ( y  e.  RR  |->  ( y ^
3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) )
6261a1i 11 . . . . . . . . . . 11  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( y ^ 3 ) ) )  =  ( y  e.  RR  |->  ( 3  x.  ( y ^ 2 ) ) ) )
63 ax-1cn 9048 . . . . . . . . . . . . 13  |-  1  e.  CC
6463, 16, 17divcli 9756 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
6564a1i 11 . . . . . . . . . . 11  |-  (  T. 
->  ( 1  /  3
)  e.  CC )
6610, 35, 37, 62, 65dvmptcmul 19850 . . . . . . . . . 10  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( 1  /  3
)  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) ) ) )
6766trud 1332 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( y ^ 3 ) ) ) )  =  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
68 sqcl 11444 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  (
y ^ 2 )  e.  CC )
69 mulcl 9074 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  ( y ^ 2 )  e.  CC )  ->  ( 3  x.  ( y ^ 2 ) )  e.  CC )
7016, 68, 69sylancr 645 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
3  x.  ( y ^ 2 ) )  e.  CC )
71 divrec2 9695 . . . . . . . . . . . . 13  |-  ( ( ( 3  x.  (
y ^ 2 ) )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7216, 17, 71mp3an23 1271 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( y ^ 2 ) )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
7311, 70, 723syl 19 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( ( 1  /  3 )  x.  ( 3  x.  (
y ^ 2 ) ) ) )
74 divcan3 9702 . . . . . . . . . . . . 13  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7516, 17, 74mp3an23 1271 . . . . . . . . . . . 12  |-  ( ( y ^ 2 )  e.  CC  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7611, 68, 753syl 19 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  (
( 3  x.  (
y ^ 2 ) )  /  3 )  =  ( y ^
2 ) )
7773, 76eqtr3d 2470 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
( 1  /  3
)  x.  ( 3  x.  ( y ^
2 ) ) )  =  ( y ^
2 ) )
7877mpteq2ia 4291 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( 1  /  3 )  x.  ( 3  x.  ( y ^ 2 ) ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
7934, 67, 783eqtri 2460 . . . . . . . 8  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( y ^ 3 )  / 
3 ) ) )  =  ( y  e.  RR  |->  ( y ^
2 ) )
8079a1i 11 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( y ^ 3 )  /  3 ) ) )  =  ( y  e.  RR  |->  ( y ^ 2 ) ) )
8122adantl 453 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  (
3  x.  y )  e.  CC )
8216elexi 2965 . . . . . . . 8  |-  3  e.  _V
8382a1i 11 . . . . . . 7  |-  ( (  T.  /\  y  e.  RR )  ->  3  e.  _V )
8411adantl 453 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  y  e.  CC )
851a1i 11 . . . . . . . . 9  |-  ( (  T.  /\  y  e.  RR )  ->  1  e.  RR )
8610dvmptid 19843 . . . . . . . . 9  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
8716a1i 11 . . . . . . . . 9  |-  (  T. 
->  3  e.  CC )
8810, 84, 85, 86, 87dvmptcmul 19850 . . . . . . . 8  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( 3  x.  1 ) ) )
8916mulid1i 9092 . . . . . . . . 9  |-  ( 3  x.  1 )  =  3
9089mpteq2i 4292 . . . . . . . 8  |-  ( y  e.  RR  |->  ( 3  x.  1 ) )  =  ( y  e.  RR  |->  3 )
9188, 90syl6eq 2484 . . . . . . 7  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  3 ) )
9210, 27, 29, 80, 81, 83, 91dvmptsub 19853 . . . . . 6  |-  (  T. 
->  ( RR  _D  (
y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  -  3 ) ) )
93 iccssre 10992 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( 1 [,] 2
)  C_  RR )
941, 3, 93mp2an 654 . . . . . . 7  |-  ( 1 [,] 2 )  C_  RR
9594a1i 11 . . . . . 6  |-  (  T. 
->  ( 1 [,] 2
)  C_  RR )
96 eqid 2436 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
9796tgioo2 18834 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
98 iccntr 18852 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
991, 3, 98mp2an 654 . . . . . . 7  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( 1 [,] 2
) )  =  ( 1 (,) 2 )
10099a1i 11 . . . . . 6  |-  (  T. 
->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 1 [,] 2 ) )  =  ( 1 (,) 2
) )
10110, 24, 26, 92, 95, 97, 96, 100dvmptres2 19848 . . . . 5  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
102 ioossicc 10996 . . . . . . 7  |-  ( 1 (,) 2 )  C_  ( 1 [,] 2
)
103 resmpt 5191 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) ) )
104102, 103ax-mp 8 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
10594, 41sstri 3357 . . . . . . . . 9  |-  ( 1 [,] 2 )  C_  CC
106 resmpt 5191 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) ) )
107105, 106ax-mp 8 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
108 eqid 2436 . . . . . . . . . . . 12  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  =  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) )
109 subcl 9305 . . . . . . . . . . . . . 14  |-  ( ( ( y ^ 2 )  e.  CC  /\  3  e.  CC )  ->  ( ( y ^
2 )  -  3 )  e.  CC )
11016, 109mpan2 653 . . . . . . . . . . . . 13  |-  ( ( y ^ 2 )  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
11168, 110syl 16 . . . . . . . . . . . 12  |-  ( y  e.  CC  ->  (
( y ^ 2 )  -  3 )  e.  CC )
112108, 111fmpti 5892 . . . . . . . . . . 11  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC
11340, 112, 403pm3.2i 1132 . . . . . . . . . 10  |-  ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )
114 ovex 6106 . . . . . . . . . . 11  |-  ( ( 2  x.  ( y ^ ( 2  -  1 ) ) )  -  0 )  e. 
_V
115 cnex 9071 . . . . . . . . . . . . . . 15  |-  CC  e.  _V
116115prid2 3913 . . . . . . . . . . . . . 14  |-  CC  e.  { RR ,  CC }
117116a1i 11 . . . . . . . . . . . . 13  |-  (  T. 
->  CC  e.  { RR ,  CC } )
11868adantl 453 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
y ^ 2 )  e.  CC )
119 ovex 6106 . . . . . . . . . . . . . 14  |-  ( 2  x.  ( y ^
( 2  -  1 ) ) )  e. 
_V
120119a1i 11 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  (
2  x.  ( y ^ ( 2  -  1 ) ) )  e.  _V )
121 2nn 10133 . . . . . . . . . . . . . . 15  |-  2  e.  NN
122 dvexp 19839 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) ) )
123121, 122ax-mp 8 . . . . . . . . . . . . . 14  |-  ( CC 
_D  ( y  e.  CC  |->  ( y ^
2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ (
2  -  1 ) ) ) )
124123a1i 11 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( y ^ 2 ) ) )  =  ( y  e.  CC  |->  ( 2  x.  ( y ^ ( 2  -  1 ) ) ) ) )
12516a1i 11 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  3  e.  CC )
126 c0ex 9085 . . . . . . . . . . . . . 14  |-  0  e.  _V
127126a1i 11 . . . . . . . . . . . . 13  |-  ( (  T.  /\  y  e.  CC )  ->  0  e.  _V )
128117, 87dvmptc 19844 . . . . . . . . . . . . 13  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  3 ) )  =  ( y  e.  CC  |->  0 ) )
129117, 118, 120, 124, 125, 127, 128dvmptsub 19853 . . . . . . . . . . . 12  |-  (  T. 
->  ( CC  _D  (
y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  (
y ^ ( 2  -  1 ) ) )  -  0 ) ) )
130129trud 1332 . . . . . . . . . . 11  |-  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  ( y  e.  CC  |->  ( ( 2  x.  ( y ^
( 2  -  1 ) ) )  - 
0 ) )
131114, 130dmmpti 5574 . . . . . . . . . 10  |-  dom  ( CC  _D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC
132 dvcn 19807 . . . . . . . . . 10  |-  ( ( ( CC  C_  CC  /\  ( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) ) : CC --> CC  /\  CC  C_  CC )  /\  dom  ( CC 
_D  ( y  e.  CC  |->  ( ( y ^ 2 )  - 
3 ) ) )  =  CC )  -> 
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  e.  ( CC -cn-> CC ) )
133113, 131, 132mp2an 654 . . . . . . . . 9  |-  ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC -cn-> CC )
134 rescncf 18927 . . . . . . . . 9  |-  ( ( 1 [,] 2 ) 
C_  CC  ->  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( CC
-cn-> CC )  ->  (
( y  e.  CC  |->  ( ( y ^
2 )  -  3 ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
135105, 133, 134mp2 9 . . . . . . . 8  |-  ( ( y  e.  CC  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
136107, 135eqeltrri 2507 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
137 rescncf 18927 . . . . . . 7  |-  ( ( 1 (,) 2 ) 
C_  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  ( ( 1 [,] 2
) -cn-> CC )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  |`  (
1 (,) 2 ) )  e.  ( ( 1 (,) 2 )
-cn-> CC ) ) )
138102, 136, 137mp2 9 . . . . . 6  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  |`  ( 1 (,) 2 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
139104, 138eqeltrri 2507 . . . . 5  |-  ( y  e.  ( 1 (,) 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 (,) 2 ) -cn-> CC )
140101, 139syl6eqel 2524 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  ( ( 1 (,) 2
) -cn-> CC ) )
141102a1i 11 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  C_  ( 1 [,] 2 ) )
142 ioombl 19459 . . . . . . 7  |-  ( 1 (,) 2 )  e. 
dom  vol
143142a1i 11 . . . . . 6  |-  (  T. 
->  ( 1 (,) 2
)  e.  dom  vol )
14425a1i 11 . . . . . 6  |-  ( (  T.  /\  y  e.  ( 1 [,] 2
) )  ->  (
( y ^ 2 )  -  3 )  e.  _V )
145 cniccibl 19732 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  (
y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) )  -> 
( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
1461, 3, 136, 145mp3an 1279 . . . . . . 7  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( y ^ 2 )  -  3 ) )  e.  L ^1
147146a1i 11 . . . . . 6  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
148141, 143, 144, 147iblss 19696 . . . . 5  |-  (  T. 
->  ( y  e.  ( 1 (,) 2 ) 
|->  ( ( y ^
2 )  -  3 ) )  e.  L ^1 )
149101, 148eqeltrd 2510 . . . 4  |-  (  T. 
->  ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) )  e.  L ^1 )
150 resmpt 5191 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )
15194, 150ax-mp 8 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
152 eqid 2436 . . . . . . . . . 10  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
153152, 23fmpti 5892 . . . . . . . . 9  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC
154 ssid 3367 . . . . . . . . 9  |-  RR  C_  RR
15541, 153, 1543pm3.2i 1132 . . . . . . . 8  |-  ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )
15692trud 1332 . . . . . . . . 9  |-  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  RR  |->  ( ( y ^ 2 )  - 
3 ) )
15725, 156dmmpti 5574 . . . . . . . 8  |-  dom  ( RR  _D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR
158 dvcn 19807 . . . . . . . 8  |-  ( ( ( RR  C_  CC  /\  ( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) : RR --> CC  /\  RR  C_  RR )  /\  dom  ( RR 
_D  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  RR )  -> 
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( RR -cn-> CC ) )
159155, 157, 158mp2an 654 . . . . . . 7  |-  ( y  e.  RR  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( RR -cn-> CC )
160 rescncf 18927 . . . . . . 7  |-  ( ( 1 [,] 2 ) 
C_  RR  ->  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  e.  ( RR
-cn-> CC )  ->  (
( y  e.  RR  |->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  |`  (
1 [,] 2 ) )  e.  ( ( 1 [,] 2 )
-cn-> CC ) ) )
16194, 159, 160mp2 9 . . . . . 6  |-  ( ( y  e.  RR  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) )  |`  ( 1 [,] 2 ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
162151, 161eqeltrri 2507 . . . . 5  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  e.  ( ( 1 [,] 2 ) -cn-> CC )
163162a1i 11 . . . 4  |-  (  T. 
->  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) )  e.  ( ( 1 [,] 2
) -cn-> CC ) )
1642, 4, 7, 140, 149, 163ftc2 19928 . . 3  |-  (  T. 
->  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ` 
2 )  -  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
) ) )
165164trud 1332 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  ( ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) ) `
 1 ) )
166 itgeq2 19669 . . 3  |-  ( A. x  e.  ( 1 (,) 2 ) ( ( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 )  ->  S. ( 1 (,) 2
) ( ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) ) `
 x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x )
167 oveq1 6088 . . . . 5  |-  ( y  =  x  ->  (
y ^ 2 )  =  ( x ^
2 ) )
168167oveq1d 6096 . . . 4  |-  ( y  =  x  ->  (
( y ^ 2 )  -  3 )  =  ( ( x ^ 2 )  - 
3 ) )
169101trud 1332 . . . 4  |-  ( RR 
_D  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) ) )  =  ( y  e.  ( 1 (,) 2
)  |->  ( ( y ^ 2 )  - 
3 ) )
170 ovex 6106 . . . 4  |-  ( ( x ^ 2 )  -  3 )  e. 
_V
171168, 169, 170fvmpt 5806 . . 3  |-  ( x  e.  ( 1 (,) 2 )  ->  (
( RR  _D  (
y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) ) `  x
)  =  ( ( x ^ 2 )  -  3 ) )
172166, 171mprg 2775 . 2  |-  S. ( 1 (,) 2 ) ( ( RR  _D  ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) ) `  x )  _d x  =  S. ( 1 (,) 2 ) ( ( x ^ 2 )  -  3 )  _d x
1733leidi 9561 . . . . . . . . 9  |-  2  <_  2
1741, 3elicc2i 10976 . . . . . . . . 9  |-  ( 2  e.  ( 1 [,] 2 )  <->  ( 2  e.  RR  /\  1  <_  2  /\  2  <_ 
2 ) )
1753, 6, 173, 174mpbir3an 1136 . . . . . . . 8  |-  2  e.  ( 1 [,] 2
)
176 oveq1 6088 . . . . . . . . . . . 12  |-  ( y  =  2  ->  (
y ^ 3 )  =  ( 2 ^ 3 ) )
177176oveq1d 6096 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
( y ^ 3 )  /  3 )  =  ( ( 2 ^ 3 )  / 
3 ) )
178 oveq2 6089 . . . . . . . . . . 11  |-  ( y  =  2  ->  (
3  x.  y )  =  ( 3  x.  2 ) )
179177, 178oveq12d 6099 . . . . . . . . . 10  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) ) )
180 cu2 11479 . . . . . . . . . . . . 13  |-  ( 2 ^ 3 )  =  8
181180oveq1i 6091 . . . . . . . . . . . 12  |-  ( ( 2 ^ 3 )  /  3 )  =  ( 8  /  3
)
182 3t2e6 10128 . . . . . . . . . . . 12  |-  ( 3  x.  2 )  =  6
183181, 182oveq12i 6093 . . . . . . . . . . 11  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 8  / 
3 )  -  6 )
184 2cn 10070 . . . . . . . . . . . . . . 15  |-  2  e.  CC
185 6nn 10137 . . . . . . . . . . . . . . . 16  |-  6  e.  NN
186185nncni 10010 . . . . . . . . . . . . . . 15  |-  6  e.  CC
187184, 186, 16, 17divdiri 9771 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 6  /  3 ) )
188 6p2e8 10120 . . . . . . . . . . . . . . . 16  |-  ( 6  +  2 )  =  8
189186, 184, 188addcomli 9258 . . . . . . . . . . . . . . 15  |-  ( 2  +  6 )  =  8
190189oveq1i 6091 . . . . . . . . . . . . . 14  |-  ( ( 2  +  6 )  /  3 )  =  ( 8  /  3
)
191186, 16, 184, 17divmuli 9768 . . . . . . . . . . . . . . . 16  |-  ( ( 6  /  3 )  =  2  <->  ( 3  x.  2 )  =  6 )
192182, 191mpbir 201 . . . . . . . . . . . . . . 15  |-  ( 6  /  3 )  =  2
193192oveq2i 6092 . . . . . . . . . . . . . 14  |-  ( ( 2  /  3 )  +  ( 6  / 
3 ) )  =  ( ( 2  / 
3 )  +  2 )
194187, 190, 1933eqtr3i 2464 . . . . . . . . . . . . 13  |-  ( 8  /  3 )  =  ( ( 2  / 
3 )  +  2 )
195194oveq1i 6091 . . . . . . . . . . . 12  |-  ( ( 8  /  3 )  -  6 )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
196184, 16, 17divcli 9756 . . . . . . . . . . . . 13  |-  ( 2  /  3 )  e.  CC
197 subsub3 9333 . . . . . . . . . . . . 13  |-  ( ( ( 2  /  3
)  e.  CC  /\  6  e.  CC  /\  2  e.  CC )  ->  (
( 2  /  3
)  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  - 
6 ) )
198196, 186, 184, 197mp3an 1279 . . . . . . . . . . . 12  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( ( 2  /  3 )  +  2 )  -  6 )
199195, 198eqtr4i 2459 . . . . . . . . . . 11  |-  ( ( 8  /  3 )  -  6 )  =  ( ( 2  / 
3 )  -  (
6  -  2 ) )
200 4cn 10074 . . . . . . . . . . . . 13  |-  4  e.  CC
201 4p2e6 10113 . . . . . . . . . . . . . 14  |-  ( 4  +  2 )  =  6
202200, 184, 201addcomli 9258 . . . . . . . . . . . . 13  |-  ( 2  +  4 )  =  6
203186, 184, 200, 202subaddrii 9389 . . . . . . . . . . . 12  |-  ( 6  -  2 )  =  4
204203oveq2i 6092 . . . . . . . . . . 11  |-  ( ( 2  /  3 )  -  ( 6  -  2 ) )  =  ( ( 2  / 
3 )  -  4 )
205183, 199, 2043eqtri 2460 . . . . . . . . . 10  |-  ( ( ( 2 ^ 3 )  /  3 )  -  ( 3  x.  2 ) )  =  ( ( 2  / 
3 )  -  4 )
206179, 205syl6eq 2484 . . . . . . . . 9  |-  ( y  =  2  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 2  /  3 )  - 
4 ) )
207 eqid 2436 . . . . . . . . 9  |-  ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y ) ) )  =  ( y  e.  ( 1 [,] 2
)  |->  ( ( ( y ^ 3 )  /  3 )  -  ( 3  x.  y
) ) )
208 ovex 6106 . . . . . . . . 9  |-  ( ( 2  /  3 )  -  4 )  e. 
_V
209206, 207, 208fvmpt 5806 . . . . . . . 8  |-  ( 2  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  =  ( ( 2  /  3 )  -  4 ) )
210175, 209ax-mp 8 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  2 )  =  ( ( 2  /  3 )  - 
4 )
2111leidi 9561 . . . . . . . . 9  |-  1  <_  1
2121, 3elicc2i 10976 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,] 2 )  <->  ( 1  e.  RR  /\  1  <_  1  /\  1  <_ 
2 ) )
2131, 211, 6, 212mpbir3an 1136 . . . . . . . 8  |-  1  e.  ( 1 [,] 2
)
214 oveq1 6088 . . . . . . . . . . . 12  |-  ( y  =  1  ->  (
y ^ 3 )  =  ( 1 ^ 3 ) )
215214oveq1d 6096 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
( y ^ 3 )  /  3 )  =  ( ( 1 ^ 3 )  / 
3 ) )
216 oveq2 6089 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
3  x.  y )  =  ( 3  x.  1 ) )
217215, 216oveq12d 6099 . . . . . . . . . 10  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) ) )
21842nnzi 10305 . . . . . . . . . . . . 13  |-  3  e.  ZZ
219 1exp 11409 . . . . . . . . . . . . 13  |-  ( 3  e.  ZZ  ->  (
1 ^ 3 )  =  1 )
220218, 219ax-mp 8 . . . . . . . . . . . 12  |-  ( 1 ^ 3 )  =  1
221220oveq1i 6091 . . . . . . . . . . 11  |-  ( ( 1 ^ 3 )  /  3 )  =  ( 1  /  3
)
222221, 89oveq12i 6093 . . . . . . . . . 10  |-  ( ( ( 1 ^ 3 )  /  3 )  -  ( 3  x.  1 ) )  =  ( ( 1  / 
3 )  -  3 )
223217, 222syl6eq 2484 . . . . . . . . 9  |-  ( y  =  1  ->  (
( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) )  =  ( ( 1  /  3 )  - 
3 ) )
224 ovex 6106 . . . . . . . . 9  |-  ( ( 1  /  3 )  -  3 )  e. 
_V
225223, 207, 224fvmpt 5806 . . . . . . . 8  |-  ( 1  e.  ( 1 [,] 2 )  ->  (
( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  1
)  =  ( ( 1  /  3 )  -  3 ) )
226213, 225ax-mp 8 . . . . . . 7  |-  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 )  =  ( ( 1  /  3 )  - 
3 )
227210, 226oveq12i 6093 . . . . . 6  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )
228 sub4 9346 . . . . . . 7  |-  ( ( ( ( 2  / 
3 )  e.  CC  /\  4  e.  CC )  /\  ( ( 1  /  3 )  e.  CC  /\  3  e.  CC ) )  -> 
( ( ( 2  /  3 )  - 
4 )  -  (
( 1  /  3
)  -  3 ) )  =  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) ) )
229196, 200, 64, 16, 228mp4an 655 . . . . . 6  |-  ( ( ( 2  /  3
)  -  4 )  -  ( ( 1  /  3 )  - 
3 ) )  =  ( ( ( 2  /  3 )  -  ( 1  /  3
) )  -  (
4  -  3 ) )
23016, 17pm3.2i 442 . . . . . . . . 9  |-  ( 3  e.  CC  /\  3  =/=  0 )
231 divsubdir 9710 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 2  -  1 )  / 
3 )  =  ( ( 2  /  3
)  -  ( 1  /  3 ) ) )
232184, 63, 230, 231mp3an 1279 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( ( 2  / 
3 )  -  (
1  /  3 ) )
233 2m1e1 10095 . . . . . . . . 9  |-  ( 2  -  1 )  =  1
234233oveq1i 6091 . . . . . . . 8  |-  ( ( 2  -  1 )  /  3 )  =  ( 1  /  3
)
235232, 234eqtr3i 2458 . . . . . . 7  |-  ( ( 2  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  /  3
)
236 3p1e4 10104 . . . . . . . 8  |-  ( 3  +  1 )  =  4
237200, 16, 63, 236subaddrii 9389 . . . . . . 7  |-  ( 4  -  3 )  =  1
238235, 237oveq12i 6093 . . . . . 6  |-  ( ( ( 2  /  3
)  -  ( 1  /  3 ) )  -  ( 4  -  3 ) )  =  ( ( 1  / 
3 )  -  1 )
239227, 229, 2383eqtri 2460 . . . . 5  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  1 )
24016, 17dividi 9747 . . . . . 6  |-  ( 3  /  3 )  =  1
241240oveq2i 6092 . . . . 5  |-  ( ( 1  /  3 )  -  ( 3  / 
3 ) )  =  ( ( 1  / 
3 )  -  1 )
242239, 241eqtr4i 2459 . . . 4  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  /  3 )  -  ( 3  / 
3 ) )
243 divsubdir 9710 . . . . 5  |-  ( ( 1  e.  CC  /\  3  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 1  -  3 )  / 
3 )  =  ( ( 1  /  3
)  -  ( 3  /  3 ) ) )
24463, 16, 230, 243mp3an 1279 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( ( 1  / 
3 )  -  (
3  /  3 ) )
245242, 244eqtr4i 2459 . . 3  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  ( ( 1  -  3 )  /  3 )
246 divneg 9709 . . . . 5  |-  ( ( 2  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  -u (
2  /  3 )  =  ( -u 2  /  3 ) )
247184, 16, 17, 246mp3an 1279 . . . 4  |-  -u (
2  /  3 )  =  ( -u 2  /  3 )
24816, 63negsubdi2i 9386 . . . . . 6  |-  -u (
3  -  1 )  =  ( 1  -  3 )
24945negeqi 9299 . . . . . 6  |-  -u (
3  -  1 )  =  -u 2
250248, 249eqtr3i 2458 . . . . 5  |-  ( 1  -  3 )  = 
-u 2
251250oveq1i 6091 . . . 4  |-  ( ( 1  -  3 )  /  3 )  =  ( -u 2  / 
3 )
252247, 251eqtr4i 2459 . . 3  |-  -u (
2  /  3 )  =  ( ( 1  -  3 )  / 
3 )
253245, 252eqtr4i 2459 . 2  |-  ( ( ( y  e.  ( 1 [,] 2 ) 
|->  ( ( ( y ^ 3 )  / 
3 )  -  (
3  x.  y ) ) ) `  2
)  -  ( ( y  e.  ( 1 [,] 2 )  |->  ( ( ( y ^
3 )  /  3
)  -  ( 3  x.  y ) ) ) `  1 ) )  =  -u (
2  /  3 )
254165, 172, 2533eqtr3i 2464 1  |-  S. ( 1 (,) 2 ) ( ( x ^
2 )  -  3 )  _d x  = 
-u ( 2  / 
3 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    C_ wss 3320   {cpr 3815   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   ran crn 4879    |` cres 4880   -->wf 5450   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    <_ cle 9121    - cmin 9291   -ucneg 9292    / cdiv 9677   NNcn 10000   2c2 10049   3c3 10050   4c4 10051   6c6 10053   8c8 10055   NN0cn0 10221   ZZcz 10282   (,)cioo 10916   [,]cicc 10919   ^cexp 11382   TopOpenctopn 13649   topGenctg 13665  ℂfldccnfld 16703   intcnt 17081   -cn->ccncf 18906   volcvol 19360   L ^1cibl 19509   S.citg 19510    _D cdv 19750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cc 8315  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-ovol 19361  df-vol 19362  df-mbf 19512  df-itg1 19513  df-itg2 19514  df-ibl 19515  df-itg 19516  df-0p 19562  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator