Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhple Structured version   Unicode version

Theorem lhple 30776
Description: Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
Hypotheses
Ref Expression
lhple.b  |-  B  =  ( Base `  K
)
lhple.l  |-  .<_  =  ( le `  K )
lhple.j  |-  .\/  =  ( join `  K )
lhple.m  |-  ./\  =  ( meet `  K )
lhple.a  |-  A  =  ( Atoms `  K )
lhple.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhple  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( P 
.\/  X )  ./\  W )  =  X )

Proof of Theorem lhple
StepHypRef Expression
1 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  K  e.  HL )
2 hllat 30098 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  K  e.  Lat )
4 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  P  e.  A
)
5 lhple.b . . . . . 6  |-  B  =  ( Base `  K
)
6 lhple.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 30024 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
84, 7syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  P  e.  B
)
9 simp3l 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  X  e.  B
)
10 lhple.j . . . . 5  |-  .\/  =  ( join `  K )
115, 10latjcom 14480 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .\/  X
)  =  ( X 
.\/  P ) )
123, 8, 9, 11syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( P  .\/  X )  =  ( X 
.\/  P ) )
1312oveq1d 6088 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( P 
.\/  X )  ./\  W )  =  ( ( X  .\/  P ) 
./\  W ) )
14 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
15 simp3r 986 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  X  .<_  W )
16 lhple.l . . . 4  |-  .<_  =  ( le `  K )
17 lhple.m . . . 4  |-  ./\  =  ( meet `  K )
18 lhple.h . . . 4  |-  H  =  ( LHyp `  K
)
195, 16, 10, 17, 18lhpmod6i1 30773 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  P  e.  B )  /\  X  .<_  W )  ->  ( X  .\/  ( P  ./\  W ) )  =  ( ( X  .\/  P
)  ./\  W )
)
2014, 9, 8, 15, 19syl121anc 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( X  .\/  ( P  ./\  W ) )  =  ( ( X  .\/  P ) 
./\  W ) )
21 eqid 2435 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2216, 17, 21, 6, 18lhpmat 30764 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
23223adant3 977 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( P  ./\  W )  =  ( 0.
`  K ) )
2423oveq2d 6089 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( X  .\/  ( P  ./\  W ) )  =  ( X 
.\/  ( 0. `  K ) ) )
25 hlol 30096 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
261, 25syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  K  e.  OL )
275, 10, 21olj01 29960 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  .\/  ( 0. `  K ) )  =  X )
2826, 9, 27syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( X  .\/  ( 0. `  K ) )  =  X )
2924, 28eqtrd 2467 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( X  .\/  ( P  ./\  W ) )  =  X )
3013, 20, 293eqtr2d 2473 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( P 
.\/  X )  ./\  W )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   0.cp0 14458   Latclat 14466   OLcol 29909   Atomscatm 29998   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  lhpat4N  30778  cdlemn2  31930  dihord5apre  31997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722
  Copyright terms: Public domain W3C validator