MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcrcl Structured version   Unicode version

Theorem limcrcl 19761
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcrcl  |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )

Proof of Theorem limcrcl
Dummy variables  f 
j  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-limc 19753 . . 3  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  |  [. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } )
21elmpt2cl 6288 . 2  |-  ( C  e.  ( F lim CC  B )  ->  ( F  e.  ( CC  ^pm 
CC )  /\  B  e.  CC ) )
3 cnex 9071 . . . . 5  |-  CC  e.  _V
43, 3elpm2 7045 . . . 4  |-  ( F  e.  ( CC  ^pm  CC )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  CC ) )
54anbi1i 677 . . 3  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC )  <->  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  B  e.  CC ) )
6 df-3an 938 . . 3  |-  ( ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) 
<->  ( ( F : dom  F --> CC  /\  dom  F 
C_  CC )  /\  B  e.  CC )
)
75, 6bitr4i 244 . 2  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC )  <->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
82, 7sylib 189 1  |-  ( C  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   {cab 2422   [.wsbc 3161    u. cun 3318    C_ wss 3320   ifcif 3739   {csn 3814    e. cmpt 4266   dom cdm 4878   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^pm cpm 7019   CCcc 8988   ↾t crest 13648   TopOpenctopn 13649  ℂfldccnfld 16703    CnP ccnp 17289   lim CC climc 19749
This theorem is referenced by:  limccl  19762  limcdif  19763  limcresi  19772  limcres  19773  limccnp  19778  limccnp2  19779  limcco  19780  limcun  19782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-pm 7021  df-limc 19753
  Copyright terms: Public domain W3C validator