MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limom Unicode version

Theorem limom 4819
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
limom  |-  Lim  om

Proof of Theorem limom
StepHypRef Expression
1 ordom 4813 . 2  |-  Ord  om
2 ordeleqon 4728 . . 3  |-  ( Ord 
om 
<->  ( om  e.  On  \/  om  =  On ) )
3 ordirr 4559 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
41, 3ax-mp 8 . . . . . 6  |-  -.  om  e.  om
5 elom 4807 . . . . . . 7  |-  ( om  e.  om  <->  ( om  e.  On  /\  A. x
( Lim  x  ->  om  e.  x ) ) )
65baib 872 . . . . . 6  |-  ( om  e.  On  ->  ( om  e.  om  <->  A. x
( Lim  x  ->  om  e.  x ) ) )
74, 6mtbii 294 . . . . 5  |-  ( om  e.  On  ->  -.  A. x ( Lim  x  ->  om  e.  x ) )
8 limomss 4809 . . . . . . . . . . 11  |-  ( Lim  x  ->  om  C_  x
)
9 limord 4600 . . . . . . . . . . . 12  |-  ( Lim  x  ->  Ord  x )
10 ordsseleq 4570 . . . . . . . . . . . 12  |-  ( ( Ord  om  /\  Ord  x )  ->  ( om  C_  x  <->  ( om  e.  x  \/  om  =  x ) ) )
111, 9, 10sylancr 645 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( om  C_  x  <->  ( om  e.  x  \/  om  =  x ) ) )
128, 11mpbid 202 . . . . . . . . . 10  |-  ( Lim  x  ->  ( om  e.  x  \/  om  =  x ) )
1312ord 367 . . . . . . . . 9  |-  ( Lim  x  ->  ( -.  om  e.  x  ->  om  =  x ) )
14 limeq 4553 . . . . . . . . . 10  |-  ( om  =  x  ->  ( Lim  om  <->  Lim  x ) )
1514biimprcd 217 . . . . . . . . 9  |-  ( Lim  x  ->  ( om  =  x  ->  Lim  om ) )
1613, 15syld 42 . . . . . . . 8  |-  ( Lim  x  ->  ( -.  om  e.  x  ->  Lim  om ) )
1716con1d 118 . . . . . . 7  |-  ( Lim  x  ->  ( -.  Lim  om  ->  om  e.  x ) )
1817com12 29 . . . . . 6  |-  ( -. 
Lim  om  ->  ( Lim  x  ->  om  e.  x ) )
1918alrimiv 1638 . . . . 5  |-  ( -. 
Lim  om  ->  A. x
( Lim  x  ->  om  e.  x ) )
207, 19nsyl2 121 . . . 4  |-  ( om  e.  On  ->  Lim  om )
21 limon 4775 . . . . 5  |-  Lim  On
22 limeq 4553 . . . . 5  |-  ( om  =  On  ->  ( Lim  om  <->  Lim  On ) )
2321, 22mpbiri 225 . . . 4  |-  ( om  =  On  ->  Lim  om )
2420, 23jaoi 369 . . 3  |-  ( ( om  e.  On  \/  om  =  On )  ->  Lim  om )
252, 24sylbi 188 . 2  |-  ( Ord 
om  ->  Lim  om )
261, 25ax-mp 8 1  |-  Lim  om
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358   A.wal 1546    = wceq 1649    e. wcel 1721    C_ wss 3280   Ord word 4540   Oncon0 4541   Lim wlim 4542   omcom 4804
This theorem is referenced by:  peano2b  4820  ssnlim  4822  peano1  4823  onesuc  6733  oaabslem  6845  oaabs2  6847  omabslem  6848  infensuc  7244  infeq5i  7547  elom3  7559  omenps  7565  omensuc  7566  infdifsn  7567  cardlim  7815  r1om  8080  cfom  8100  ominf4  8148  alephom  8416  wunex3  8572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805
  Copyright terms: Public domain W3C validator