MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Unicode version

Theorem limomss 4633
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss  |-  ( Lim 
A  ->  om  C_  A
)

Proof of Theorem limomss
StepHypRef Expression
1 limord 4423 . 2  |-  ( Lim 
A  ->  Ord  A )
2 ordeleqon 4552 . . 3  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
3 elom 4631 . . . . . . . . . 10  |-  ( x  e.  om  <->  ( x  e.  On  /\  A. y
( Lim  y  ->  x  e.  y ) ) )
43simprbi 452 . . . . . . . . 9  |-  ( x  e.  om  ->  A. y
( Lim  y  ->  x  e.  y ) )
5 limeq 4376 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( Lim  y  <->  Lim  A ) )
6 eleq2 2319 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
75, 6imbi12d 313 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( Lim  y  ->  x  e.  y )  <->  ( Lim  A  ->  x  e.  A
) ) )
87cla4gv 2843 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A. y ( Lim  y  ->  x  e.  y )  ->  ( Lim  A  ->  x  e.  A ) ) )
94, 8syl5 30 . . . . . . . 8  |-  ( A  e.  On  ->  (
x  e.  om  ->  ( Lim  A  ->  x  e.  A ) ) )
109com23 74 . . . . . . 7  |-  ( A  e.  On  ->  ( Lim  A  ->  ( x  e.  om  ->  x  e.  A ) ) )
1110imp 420 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  (
x  e.  om  ->  x  e.  A ) )
1211ssrdv 3160 . . . . 5  |-  ( ( A  e.  On  /\  Lim  A )  ->  om  C_  A
)
1312ex 425 . . . 4  |-  ( A  e.  On  ->  ( Lim  A  ->  om  C_  A
) )
14 omsson 4632 . . . . . 6  |-  om  C_  On
15 sseq2 3175 . . . . . 6  |-  ( A  =  On  ->  ( om  C_  A  <->  om  C_  On ) )
1614, 15mpbiri 226 . . . . 5  |-  ( A  =  On  ->  om  C_  A
)
1716a1d 24 . . . 4  |-  ( A  =  On  ->  ( Lim  A  ->  om  C_  A
) )
1813, 17jaoi 370 . . 3  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( Lim  A  ->  om  C_  A ) )
192, 18sylbi 189 . 2  |-  ( Ord 
A  ->  ( Lim  A  ->  om  C_  A ) )
201, 19mpcom 34 1  |-  ( Lim 
A  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    \/ wo 359    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621    C_ wss 3127   Ord word 4363   Oncon0 4364   Lim wlim 4365   omcom 4628
This theorem is referenced by:  limom  4643  rdg0  6402  frfnom  6415  frsuc  6417  r1fin  7413  rankdmr1  7441  rankeq0b  7500  cardlim  7573  ackbij2  7837  cfom  7858  wunom  8310  inar1  8365
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-tr 4088  df-eprel 4277  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629
  Copyright terms: Public domain W3C validator