Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmpi Unicode version

Theorem limsucncmpi 24295
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Hypothesis
Ref Expression
limsucncmpi.1  |-  Lim  A
Assertion
Ref Expression
limsucncmpi  |-  -.  suc  A  e.  Comp

Proof of Theorem limsucncmpi
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . . . 5  |-  ( suc 
A  e.  Top  ->  suc 
A  e.  _V )
2 sucexb 4600 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
31, 2sylibr 203 . . . 4  |-  ( suc 
A  e.  Top  ->  A  e.  _V )
4 sssucid 4469 . . . . 5  |-  A  C_  suc  A
5 elpwg 3632 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  ~P suc  A  <-> 
A  C_  suc  A ) )
64, 5mpbiri 224 . . . 4  |-  ( A  e.  _V  ->  A  e.  ~P suc  A )
7 limsucncmpi.1 . . . . . . 7  |-  Lim  A
8 limuni 4452 . . . . . . 7  |-  ( Lim 
A  ->  A  =  U. A )
97, 8ax-mp 8 . . . . . 6  |-  A  = 
U. A
10 elin 3358 . . . . . . . . . 10  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  e.  ~P A  /\  z  e.  Fin ) )
11 elpwi 3633 . . . . . . . . . . 11  |-  ( z  e.  ~P A  -> 
z  C_  A )
1211anim1i 551 . . . . . . . . . 10  |-  ( ( z  e.  ~P A  /\  z  e.  Fin )  ->  ( z  C_  A  /\  z  e.  Fin ) )
1310, 12sylbi 187 . . . . . . . . 9  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  (
z  C_  A  /\  z  e.  Fin )
)
14 nlim0 4450 . . . . . . . . . . . . . . . 16  |-  -.  Lim  (/)
157, 142th 230 . . . . . . . . . . . . . . 15  |-  ( Lim 
A  <->  -.  Lim  (/) )
16 xor3 346 . . . . . . . . . . . . . . 15  |-  ( -.  ( Lim  A  <->  Lim  (/) )  <->  ( Lim  A  <->  -.  Lim  (/) ) )
1715, 16mpbir 200 . . . . . . . . . . . . . 14  |-  -.  ( Lim  A  <->  Lim  (/) )
18 limeq 4404 . . . . . . . . . . . . . . 15  |-  ( A  =  (/)  ->  ( Lim 
A  <->  Lim  (/) ) )
1918necon3bi 2487 . . . . . . . . . . . . . 14  |-  ( -.  ( Lim  A  <->  Lim  (/) )  ->  A  =/=  (/) )
2017, 19ax-mp 8 . . . . . . . . . . . . 13  |-  A  =/=  (/)
21 uni0 3854 . . . . . . . . . . . . 13  |-  U. (/)  =  (/)
2220, 21neeqtrri 2469 . . . . . . . . . . . 12  |-  A  =/=  U. (/)
23 unieq 3836 . . . . . . . . . . . . 13  |-  ( z  =  (/)  ->  U. z  =  U. (/) )
2423neeq2d 2460 . . . . . . . . . . . 12  |-  ( z  =  (/)  ->  ( A  =/=  U. z  <->  A  =/=  U. (/) ) )
2522, 24mpbiri 224 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  A  =/=  U. z )
2625a1i 10 . . . . . . . . . 10  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =  (/)  ->  A  =/=  U. z
) )
27 limord 4451 . . . . . . . . . . . . . 14  |-  ( Lim 
A  ->  Ord  A )
28 ordsson 4581 . . . . . . . . . . . . . 14  |-  ( Ord 
A  ->  A  C_  On )
297, 27, 28mp2b 9 . . . . . . . . . . . . 13  |-  A  C_  On
30 sstr2 3186 . . . . . . . . . . . . 13  |-  ( z 
C_  A  ->  ( A  C_  On  ->  z  C_  On ) )
3129, 30mpi 16 . . . . . . . . . . . 12  |-  ( z 
C_  A  ->  z  C_  On )
32 ordunifi 7107 . . . . . . . . . . . . 13  |-  ( ( z  C_  On  /\  z  e.  Fin  /\  z  =/=  (/) )  ->  U. z  e.  z )
33323expia 1153 . . . . . . . . . . . 12  |-  ( ( z  C_  On  /\  z  e.  Fin )  ->  (
z  =/=  (/)  ->  U. z  e.  z ) )
3431, 33sylan 457 . . . . . . . . . . 11  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =/=  (/)  ->  U. z  e.  z ) )
35 ssel 3174 . . . . . . . . . . . . 13  |-  ( z 
C_  A  ->  ( U. z  e.  z  ->  U. z  e.  A
) )
367, 27ax-mp 8 . . . . . . . . . . . . . 14  |-  Ord  A
37 nordeq 4411 . . . . . . . . . . . . . 14  |-  ( ( Ord  A  /\  U. z  e.  A )  ->  A  =/=  U. z
)
3836, 37mpan 651 . . . . . . . . . . . . 13  |-  ( U. z  e.  A  ->  A  =/=  U. z )
3935, 38syl6 29 . . . . . . . . . . . 12  |-  ( z 
C_  A  ->  ( U. z  e.  z  ->  A  =/=  U. z
) )
4039adantr 451 . . . . . . . . . . 11  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( U. z  e.  z  ->  A  =/=  U. z ) )
4134, 40syld 40 . . . . . . . . . 10  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  ( z  =/=  (/)  ->  A  =/=  U. z ) )
4226, 41pm2.61dne 2523 . . . . . . . . 9  |-  ( ( z  C_  A  /\  z  e.  Fin )  ->  A  =/=  U. z
)
4313, 42syl 15 . . . . . . . 8  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  A  =/=  U. z )
4443neneqd 2462 . . . . . . 7  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  -.  A  =  U. z
)
4544nrex 2645 . . . . . 6  |-  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
46 unieq 3836 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4746eqeq2d 2294 . . . . . . . 8  |-  ( y  =  A  ->  ( A  =  U. y  <->  A  =  U. A ) )
48 pweq 3628 . . . . . . . . . . 11  |-  ( y  =  A  ->  ~P y  =  ~P A
)
4948ineq1d 3369 . . . . . . . . . 10  |-  ( y  =  A  ->  ( ~P y  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
5049rexeqdv 2743 . . . . . . . . 9  |-  ( y  =  A  ->  ( E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z  <->  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) )
5150notbid 285 . . . . . . . 8  |-  ( y  =  A  ->  ( -.  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z 
<->  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z ) )
5247, 51anbi12d 691 . . . . . . 7  |-  ( y  =  A  ->  (
( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z )  <->  ( A  =  U. A  /\  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) ) )
5352rspcev 2884 . . . . . 6  |-  ( ( A  e.  ~P suc  A  /\  ( A  = 
U. A  /\  -.  E. z  e.  ( ~P A  i^i  Fin ) A  =  U. z
) )  ->  E. y  e.  ~P  suc  A ( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z ) )
549, 45, 53mpanr12 666 . . . . 5  |-  ( A  e.  ~P suc  A  ->  E. y  e.  ~P  suc  A ( A  = 
U. y  /\  -.  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z
) )
55 rexanali 2589 . . . . 5  |-  ( E. y  e.  ~P  suc  A ( A  =  U. y  /\  -.  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z )  <->  -.  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
5654, 55sylib 188 . . . 4  |-  ( A  e.  ~P suc  A  ->  -.  A. y  e. 
~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
573, 6, 563syl 18 . . 3  |-  ( suc 
A  e.  Top  ->  -. 
A. y  e.  ~P  suc  A ( A  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) A  = 
U. z ) )
58 imnan 411 . . 3  |-  ( ( suc  A  e.  Top  ->  -.  A. y  e. 
~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )  <->  -.  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) ) )
5957, 58mpbi 199 . 2  |-  -.  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A ( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) )
60 ordunisuc 4623 . . . . 5  |-  ( Ord 
A  ->  U. suc  A  =  A )
617, 27, 60mp2b 9 . . . 4  |-  U. suc  A  =  A
6261eqcomi 2287 . . 3  |-  A  = 
U. suc  A
6362iscmp 17115 . 2  |-  ( suc 
A  e.  Comp  <->  ( suc  A  e.  Top  /\  A. y  e.  ~P  suc  A
( A  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) A  =  U. z ) ) )
6459, 63mtbir 290 1  |-  -.  suc  A  e.  Comp
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   U.cuni 3827   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394   Fincfn 6863   Topctop 16631   Compccmp 17113
This theorem is referenced by:  limsucncmp  24296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-er 6660  df-en 6864  df-fin 6867  df-cmp 17114
  Copyright terms: Public domain W3C validator