MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval Unicode version

Theorem limsupval 11950
Description: The superior limit of an infinite sequence  F of extended real numbers, which is the infimum (indicated by  `'  <) of the set of suprema of all upper infinite subsequences of  F. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypothesis
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupval  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    G( k)    V( k)

Proof of Theorem limsupval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2798 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 imaeq1 5009 . . . . . . . . 9  |-  ( x  =  F  ->  (
x " ( k [,)  +oo ) )  =  ( F " (
k [,)  +oo ) ) )
32ineq1d 3371 . . . . . . . 8  |-  ( x  =  F  ->  (
( x " (
k [,)  +oo ) )  i^i  RR* )  =  ( ( F " (
k [,)  +oo ) )  i^i  RR* ) )
43supeq1d 7201 . . . . . . 7  |-  ( x  =  F  ->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54mpteq2dv 4109 . . . . . 6  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
6 limsupval.1 . . . . . 6  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
75, 6syl6eqr 2335 . . . . 5  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  G )
87rneqd 4908 . . . 4  |-  ( x  =  F  ->  ran  ( k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  G
)
98supeq1d 7201 . . 3  |-  ( x  =  F  ->  sup ( ran  ( k  e.  RR  |->  sup ( ( ( x " ( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
10 df-limsup 11947 . . 3  |-  limsup  =  ( x  e.  _V  |->  sup ( ran  ( k  e.  RR  |->  sup (
( ( x "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  ) )
11 xrltso 10477 . . . . 5  |-  <  Or  RR*
12 cnvso 5216 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 199 . . . 4  |-  `'  <  Or 
RR*
1413supex 7216 . . 3  |-  sup ( ran  G ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5604 . 2  |-  ( F  e.  _V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
161, 15syl 15 1  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686   _Vcvv 2790    i^i cin 3153    e. cmpt 4079    Or wor 4315   `'ccnv 4690   ran crn 4692   "cima 4694   ` cfv 5257  (class class class)co 5860   supcsup 7195   RRcr 8738    +oocpnf 8866   RR*cxr 8868    < clt 8869   [,)cico 10660   limsupclsp 11946
This theorem is referenced by:  limsuple  11954  limsupval2  11956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-pre-lttri 8813  ax-pre-lttrn 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-sup 7196  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-limsup 11947
  Copyright terms: Public domain W3C validator