MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval Unicode version

Theorem limsupval 11944
Description: The superior limit of an infinite sequence  F of extended real numbers, which is the infimum (indicated by  `'  <) of the set of suprema of all upper infinite subsequences of  F. Definition 12-4.1 of [Gleason] p. 175. (Contributed by NM, 26-Oct-2005.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypothesis
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupval  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Distinct variable group:    k, F
Allowed substitution hints:    G( k)    V( k)

Proof of Theorem limsupval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2797 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 imaeq1 5006 . . . . . . . . 9  |-  ( x  =  F  ->  (
x " ( k [,)  +oo ) )  =  ( F " (
k [,)  +oo ) ) )
32ineq1d 3370 . . . . . . . 8  |-  ( x  =  F  ->  (
( x " (
k [,)  +oo ) )  i^i  RR* )  =  ( ( F " (
k [,)  +oo ) )  i^i  RR* ) )
43supeq1d 7195 . . . . . . 7  |-  ( x  =  F  ->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
54mpteq2dv 4108 . . . . . 6  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
6 limsupval.1 . . . . . 6  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
75, 6syl6eqr 2334 . . . . 5  |-  ( x  =  F  ->  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  G )
87rneqd 4905 . . . 4  |-  ( x  =  F  ->  ran  (  k  e.  RR  |->  sup ( ( ( x
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  G
)
98supeq1d 7195 . . 3  |-  ( x  =  F  ->  sup ( ran  (  k  e.  RR  |->  sup ( ( ( x " ( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
10 df-limsup 11941 . . 3  |-  limsup  =  ( x  e.  _V  |->  sup ( ran  (  k  e.  RR  |->  sup (
( ( x "
( k [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  `'  <  ) )
11 xrltso 10471 . . . . 5  |-  <  Or  RR*
12 cnvso 5212 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1311, 12mpbi 199 . . . 4  |-  `'  <  Or 
RR*
1413supex 7210 . . 3  |-  sup ( ran  G ,  RR* ,  `'  <  )  e.  _V
159, 10, 14fvmpt 5564 . 2  |-  ( F  e.  _V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
161, 15syl 15 1  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685   _Vcvv 2789    i^i cin 3152    e. cmpt 4078    Or wor 4312   `'ccnv 4687   ran crn 4689   "cima 4691   ` cfv 5221  (class class class)co 5820   supcsup 7189   RRcr 8732    +oocpnf 8860   RR*cxr 8862    < clt 8863   [,)cico 10654   limsupclsp 11940
This theorem is referenced by:  limsuple  11948  limsupval2  11950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-pre-lttri 8807  ax-pre-lttrn 8808
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-limsup 11941
  Copyright terms: Public domain W3C validator