MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval2 Unicode version

Theorem limsupval2 11948
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupval2.1  |-  ( ph  ->  F  e.  V )
limsupval2.2  |-  ( ph  ->  A  C_  RR )
limsupval2.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
Assertion
Ref Expression
limsupval2  |-  ( ph  ->  ( limsup `  F )  =  sup ( ( G
" A ) , 
RR* ,  `'  <  ) )
Distinct variable group:    k, F
Dummy variables  n  x are mutually distinct and distinct from all other variables.
Allowed substitution hints:    ph( k)    A( k)    G( k)    V( k)

Proof of Theorem limsupval2
StepHypRef Expression
1 limsupval2.1 . . 3  |-  ( ph  ->  F  e.  V )
2 limsupval.1 . . . 4  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
32limsupval 11942 . . 3  |-  ( F  e.  V  ->  ( limsup `
 F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
41, 3syl 17 . 2  |-  ( ph  ->  ( limsup `  F )  =  sup ( ran  G ,  RR* ,  `'  <  ) )
5 imassrn 5024 . . . . 5  |-  ( G
" A )  C_  ran  G
62limsupgf 11943 . . . . . . 7  |-  G : RR
--> RR*
7 frn 5360 . . . . . . 7  |-  ( G : RR --> RR*  ->  ran 
G  C_  RR* )
86, 7ax-mp 10 . . . . . 6  |-  ran  G  C_ 
RR*
9 infmxrlb 10646 . . . . . . 7  |-  ( ( ran  G  C_  RR*  /\  x  e.  ran  G )  ->  sup ( ran  G ,  RR* ,  `'  <  )  <_  x )
109ralrimiva 2627 . . . . . 6  |-  ( ran 
G  C_  RR*  ->  A. x  e.  ran  G sup ( ran  G ,  RR* ,  `'  <  )  <_  x )
118, 10mp1i 13 . . . . 5  |-  ( ph  ->  A. x  e.  ran  G sup ( ran  G ,  RR* ,  `'  <  )  <_  x )
12 ssralv 3238 . . . . 5  |-  ( ( G " A ) 
C_  ran  G  ->  ( A. x  e.  ran  G sup ( ran  G ,  RR* ,  `'  <  )  <_  x  ->  A. x  e.  ( G " A
) sup ( ran 
G ,  RR* ,  `'  <  )  <_  x )
)
135, 11, 12mpsyl 61 . . . 4  |-  ( ph  ->  A. x  e.  ( G " A ) sup ( ran  G ,  RR* ,  `'  <  )  <_  x )
145, 8sstri 3189 . . . . 5  |-  ( G
" A )  C_  RR*
15 infmxrcl 10629 . . . . . 6  |-  ( ran 
G  C_  RR*  ->  sup ( ran  G ,  RR* ,  `'  <  )  e.  RR* )
168, 15ax-mp 10 . . . . 5  |-  sup ( ran  G ,  RR* ,  `'  <  )  e.  RR*
17 infmxrgelb 10647 . . . . 5  |-  ( ( ( G " A
)  C_  RR*  /\  sup ( ran  G ,  RR* ,  `'  <  )  e.  RR* )  ->  ( sup ( ran  G ,  RR* ,  `'  <  )  <_  sup (
( G " A
) ,  RR* ,  `'  <  )  <->  A. x  e.  ( G " A ) sup ( ran  G ,  RR* ,  `'  <  )  <_  x ) )
1814, 16, 17mp2an 655 . . . 4  |-  ( sup ( ran  G ,  RR* ,  `'  <  )  <_  sup ( ( G
" A ) , 
RR* ,  `'  <  )  <->  A. x  e.  ( G " A ) sup ( ran  G ,  RR* ,  `'  <  )  <_  x )
1913, 18sylibr 205 . . 3  |-  ( ph  ->  sup ( ran  G ,  RR* ,  `'  <  )  <_  sup ( ( G
" A ) , 
RR* ,  `'  <  ) )
20 limsupval2.3 . . . . . . 7  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
21 limsupval2.2 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
22 ressxr 8871 . . . . . . . . 9  |-  RR  C_  RR*
2321, 22syl6ss 3192 . . . . . . . 8  |-  ( ph  ->  A  C_  RR* )
24 supxrunb1 10632 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  =  +oo ) )
2620, 25mpbird 225 . . . . . 6  |-  ( ph  ->  A. n  e.  RR  E. x  e.  A  n  <_  x )
27 infmxrcl 10629 . . . . . . . . . . 11  |-  ( ( G " A ) 
C_  RR*  ->  sup (
( G " A
) ,  RR* ,  `'  <  )  e.  RR* )
2814, 27mp1i 13 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( G
" A ) , 
RR* ,  `'  <  )  e.  RR* )
2921sselda 3181 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
3029ad2ant2r 729 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  RR )
316ffvelrni 5625 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( G `  x )  e.  RR* )
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  e.  RR* )
336ffvelrni 5625 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
3433ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  e.  RR* )
35 ffn 5354 . . . . . . . . . . . . 13  |-  ( G : RR --> RR*  ->  G  Fn  RR )
366, 35mp1i 13 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  G  Fn  RR )
3721ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  A  C_  RR )
38 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  A
)
39 fnfvima 5717 . . . . . . . . . . . 12  |-  ( ( G  Fn  RR  /\  A  C_  RR  /\  x  e.  A )  ->  ( G `  x )  e.  ( G " A
) )
4036, 37, 38, 39syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  e.  ( G " A ) )
41 infmxrlb 10646 . . . . . . . . . . 11  |-  ( ( ( G " A
)  C_  RR*  /\  ( G `  x )  e.  ( G " A
) )  ->  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  x )
)
4214, 40, 41sylancr 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  ( G `  x ) )
43 simplr 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  e.  RR )
44 simprr 735 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  <_  x
)
45 limsupgord 11940 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  n  <_  x )  ->  sup ( ( ( F
" ( x [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( n [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4643, 30, 44, 45syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( ( F " ( x [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( n [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
472limsupgval 11944 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( G `  x )  =  sup ( ( ( F " ( x [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4830, 47syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  =  sup ( ( ( F
" ( x [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
492limsupgval 11944 . . . . . . . . . . . 12  |-  ( n  e.  RR  ->  ( G `  n )  =  sup ( ( ( F " ( n [,)  +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
5049ad2antlr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  =  sup ( ( ( F
" ( n [,) 
+oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
5146, 48, 503brtr4d 4054 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  <_  ( G `  n )
)
5228, 32, 34, 42, 51xrletrd 10488 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  ( G `  n ) )
5352expr 600 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  RR )  /\  x  e.  A )  ->  (
n  <_  x  ->  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
) )
5453rexlimdva 2668 . . . . . . 7  |-  ( (
ph  /\  n  e.  RR )  ->  ( E. x  e.  A  n  <_  x  ->  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
) )
5554ralimdva 2622 . . . . . 6  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  ->  A. n  e.  RR  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
) )
5626, 55mpd 16 . . . . 5  |-  ( ph  ->  A. n  e.  RR  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
)
576, 35ax-mp 10 . . . . . 6  |-  G  Fn  RR
58 breq2 4028 . . . . . . 7  |-  ( x  =  ( G `  n )  ->  ( sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  x  <->  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
) )
5958ralrn 5629 . . . . . 6  |-  ( G  Fn  RR  ->  ( A. x  e.  ran  G sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  x  <->  A. n  e.  RR  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n ) ) )
6057, 59ax-mp 10 . . . . 5  |-  ( A. x  e.  ran  G sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  x  <->  A. n  e.  RR  sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  ( G `  n )
)
6156, 60sylibr 205 . . . 4  |-  ( ph  ->  A. x  e.  ran  G sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  x )
6214, 27ax-mp 10 . . . . 5  |-  sup (
( G " A
) ,  RR* ,  `'  <  )  e.  RR*
63 infmxrgelb 10647 . . . . 5  |-  ( ( ran  G  C_  RR*  /\  sup ( ( G " A ) ,  RR* ,  `'  <  )  e.  RR* )  ->  ( sup (
( G " A
) ,  RR* ,  `'  <  )  <_  sup ( ran  G ,  RR* ,  `'  <  )  <->  A. x  e.  ran  G sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  x ) )
648, 62, 63mp2an 655 . . . 4  |-  ( sup ( ( G " A ) ,  RR* ,  `'  <  )  <_  sup ( ran  G ,  RR* ,  `'  <  )  <->  A. x  e.  ran  G sup (
( G " A
) ,  RR* ,  `'  <  )  <_  x )
6561, 64sylibr 205 . . 3  |-  ( ph  ->  sup ( ( G
" A ) , 
RR* ,  `'  <  )  <_  sup ( ran  G ,  RR* ,  `'  <  ) )
66 xrletri3 10481 . . . 4  |-  ( ( sup ( ran  G ,  RR* ,  `'  <  )  e.  RR*  /\  sup (
( G " A
) ,  RR* ,  `'  <  )  e.  RR* )  ->  ( sup ( ran 
G ,  RR* ,  `'  <  )  =  sup (
( G " A
) ,  RR* ,  `'  <  )  <->  ( sup ( ran  G ,  RR* ,  `'  <  )  <_  sup (
( G " A
) ,  RR* ,  `'  <  )  /\  sup (
( G " A
) ,  RR* ,  `'  <  )  <_  sup ( ran  G ,  RR* ,  `'  <  ) ) ) )
6716, 62, 66mp2an 655 . . 3  |-  ( sup ( ran  G ,  RR* ,  `'  <  )  =  sup ( ( G
" A ) , 
RR* ,  `'  <  )  <-> 
( sup ( ran 
G ,  RR* ,  `'  <  )  <_  sup (
( G " A
) ,  RR* ,  `'  <  )  /\  sup (
( G " A
) ,  RR* ,  `'  <  )  <_  sup ( ran  G ,  RR* ,  `'  <  ) ) )
6819, 65, 67sylanbrc 647 . 2  |-  ( ph  ->  sup ( ran  G ,  RR* ,  `'  <  )  =  sup ( ( G " A ) ,  RR* ,  `'  <  ) )
694, 68eqtrd 2316 1  |-  ( ph  ->  ( limsup `  F )  =  sup ( ( G
" A ) , 
RR* ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545    i^i cin 3152    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   `'ccnv 4687   ran crn 4689   "cima 4691    Fn wfn 5216   -->wf 5217   ` cfv 5221  (class class class)co 5819   supcsup 7188   RRcr 8731    +oocpnf 8859   RR*cxr 8861    < clt 8862    <_ cle 8863   [,)cico 10652   limsupclsp 11938
This theorem is referenced by:  mbflimsup  19015
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-ico 10656  df-limsup 11939
  Copyright terms: Public domain W3C validator